## Simulating Stochastically Rounded Floating-Point Arithmetic Efficiently

Most general-purpose computing devices implement floating-point arithmetic defined in the IEEE 754-1985 standard (revised in 2008 and 2019) [1]. The standard provides various compulsory and recommended operations in order to prepare the hardware for as wide a space of applications as possible, as well as to assure reproducibility of numerical calculations across different devices. Hardware that is IEEE 754-compliant usually includes at least addition/subtraction, multiplication, division and square root operations. Each of these can be performed with various rounding modes, chosen by the user from round-to-nearest ties-to-even, round-toward-zero, round-toward-infinity, and round-toward-minus-infinity. Round-to-nearest provides the lowest error bound possible and thus is the default choice for most, but the other rounding modes find uses in various applications as well.

Given hardware with the five arithmetic operations and four rounding modes described above, how can we simulate other rounding modes efficiently when needed? Rounding modes that are not included in the IEEE 754 standard but are of interest in various research domains are, for example: round-to-odd [2], round-to-nearest ties-to-zero [3], stochastic rounding with 50/50 chance of rounding to either of the neighbouring values [4], or stochastic rounding with probabilities proportional to the distances between the exact value and the neighbouring floating-point values [5, 6]. The last of these is also used in fixed-point arithmetic: for example in machine learning [7] and ordinary differential equation (ODE) solvers [8].

In a recent preprint with Massimiliano Fasi [9] we address the problem of simulating the proportional variant of stochastic rounding of operations in precision , when there is no higher precision available in hardware (therefore is the working precision as well as the target precision for rounding). This rounding mode requires the round-off bits captured to be used in calculating the probabilities, but they are lost in IEEE 754-compliant operations of present hardware devices—an operation is performed and only the rounded result is returned in a register. A straightforward approach would be to perform operations in higher precision than and derive the probabilities from the high precision answer. However, this approach can result in low efficiency code because we would need to use software implementation of higher precision arithmetic operations; for example the MPFR package or other similar software packages developed for the purpose of computing in higher precisions than the working precision.

Our solution is to use error-free floating-point transformations [10] for addition/subtraction and multiplication, and similar transformations (yet not error free) for the division and square root, to compute the distances between the exact number and the two closest floating-point values. This can be done by having the original arguments and the rounded answer from the hardware operation, and knowing what rounding mode was used for producing it. Our algorithms presented in the paper cover two possible cases: when the rounding mode of the hardware operations is round-to-nearest ties-to-even (default) or a combination of the other three rounding modes. The former strategy results in slightly more complicated algorithms since round-to-nearest can round to both sides of the exact number, but the latter is slower due to costs associated with changing the rounding modes—this is true at least with Intel processors which we used for testing.

In simulating stochastically rounded binary64 (double precision) arithmetic operations on a computer equipped with IEEE 754-compliant operations in that precision, our algorithms achieved between 7.3 and 19 times higher throughput of arithmetic operations compared with the simulation that uses MPFR (Table 1), while not making any compromises in accuracy. In the preprint we also evaluate our algorithms in various applications where stochastic rounding is expected to bring advantages: summation of floating-point numbers and ODE solvers. In summary, our algorithms can provide significant speedup for programs that use stochastic rounding operations in working precision.

It is worth noting that the algorithms explored in [9] should not be used if higher precision than the target precision (the precision of which stochastic rounding we would like to simulate) is available in hardware. In such cases, the higher precision should be used if possible, and the high precision results from arithmetic operations should be rounded stochastically to the target precision using different algorithms: such as the ones used in the MATLAB chop [11] and CPFloat [12] packages (a separate blog post on CPFloat can be found here).

### References

[1] 754-2019 – IEEE Standard for Floating-Point Arithmetic. July 2019.

[2] Emulation of a FMA and Correctly Rounded Sums: Proved Algorithms Using Rounding to Odd. S. Boldo and G. Melquind. IEEE Trans. Comp., February 2008.

[3] Emulating Round-to-Nearest-Ties-to-Zero “augmented” Floating-Point Operations Using Round-to-Nearest-Ties-to-Even Arithmetic. S. Boldo, C. Q. Lauter, and J.-M. Muller. IEEE Trans. Comp., June 2020.

[4] CADNA: A library for estimating round-off error propagation. F. Jézéquel and J.-M. Chesneaux. Comp. Phys. Comm., 2008.

[5] Stochastic Rounding and its Probabilistic Backward Error Analysis. M. Connolly, N. J. Higham, and T. Mary. April 2020 (updated August 2020). To appear in SIAM J. Sci. Comp.

[6] Effects of round-to-nearest and stochastic rounding in the numerical solution of the heat equation in low precision. M. Croci and M. B. Giles. October 2020.

[7] Deep Learning with Limited Numerical Precision. S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Int. Conf. Machin. Learn., 2015.

[8] Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations. M. Hopkins, M. Mikaitis, D. R. Lester, and S. B. Furber. Phil. Tran. A. Roy. Soc., January, 2020.

[9] Algorithms for stochastically rounded elementary arithmetic operations in IEEE 754 floating-point arithmetic. M. Fasi and M. Mikaitis. April 2020 (updated October 2020).

[10] Handbook of Floating-Point Arithmetic. J.-M. Muller, N. Brunie, F. de Dinechin, M. Joldes, V. Lefèvre, G. Melquiond, N. Revol, and S. Torres. 2nd ed. Birkhäuser Basel, 2018.

[11] Simulating Low Precision Floating-Point Arithmetic. N. J. Higham and S. Pranesh. SIAM J. Sci. Comp., October 2019.

[12] CPFloat: A C library for emulating low-precision arithmetic. M. Fasi and M. Mikaitis. October 2020.

### Related articles

What Is Stochastic Rounding? by Nicholas J. Higham

What Is IEEE Standard Arithmetic? by Nicholas J. Higham

What Is Floating-Point Arithmetic? by Nicholas J. Higham

What Is Rounding? by Nicholas J. Higham

Pingback: CPFloat: A C library for emulating low-precision arithmetic | Numerical Linear Algebra Group