
New communication-avoiding algorithms,
and fixing old “bugs” in the BLAS and LAPACK

Jim Demmel, EECS & Math Depts., UC Berkeley
And many, many others …

Outline

● Communication-Avoiding Algorithms
○ What is communication, and why we want to avoid it
○ Examples of past algorithms (linear algebra, ML, …)
○ Optimal tiling for mixed precision matmul
○ Optimal tiling for Dense * random (eg Gaussian, ±1, …)

● Fixing old ”bugs” in the BLAS and LAPACK, i.e. making
them resilient to exceptions
○ Why better exception handling is increasingly important
○ Examples of problems: inconsistent answers, car crashes,…
○ Tentative plan to fix these problems (comments welcome!)

Why avoid communication?
• Running time of an algorithm is sum of 3 terms:

– # flops * time_per_flop
– # words moved / bandwidth
– # messages * latency

3

communication

• Time_per_flop (𝛾𝛾) << 1/ bandwidth (𝛽𝛽) << latency (𝛼𝛼)

Same story for
saving energy

Patterson & Hennessey, 2019

• Doing same operations, just in a different order
– Up to 12x faster for 2.5D dense matmul on 64K core IBM BG/P
– Up to 100x faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
– Up to 6.2x faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
– Up to 11.8x faster for direct N-body on 32K core IBM BG/P

• Mathematically identical answer, but different algorithm
– Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

– Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
– Up to 4.2x faster for BiCGStab (MiniGMG bottom solver) on 24K core Cray XE6
– Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

• Different algorithm, different approximate answer
– Up to 16x faster for SVM on a 1536 core Cray XC30
– Up to 135x faster for ImageNet training on 2K Intel KNL nodes

Sample Speedups

4

• Doing same operations, just in a different order
– Up to 12x faster for 2.5D dense matmul on 64K core IBM BG/P
– Up to 100x faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
– Up to 6.2x faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
– Up to 11.8x faster for direct N-body on 32K core IBM BG/P

• Mathematically identical answer, but different algorithm
– Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU

– Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
– Up to 4.2x faster for BiCGStab (MiniGMG bottom solver) on 32K core Cray XE6
– Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

• Different algorithm, different approximate answer
– Up to 16x faster for SVM on a 1536 core Cray XC30
– Up to 135x faster for ImageNet training on 2K Intel KNL nodes

Sample Speedups

5

Ideas adopted by Nervana, “deep learning” startup,
acquired by Intel in August 2016

SIAG on Supercomputing Best Paper Prize, 2016
(D., Grigori, Hoemmen, Langou)

Released in LAPACK 3.7, Dec 2016

IPDPS 2015 Best Paper Prize (You, D. Czechowski, Song, Vuduc)

ICPP 2018 Best Paper Prize (You, Zhang, Hsieh, D., Keutzer)

2019: Idea (LARS) adopted by industry standard benchmark MLPerf

Latest Release: Householder Reconstruction (Kozachenko, D.)

Kwasniewski, Hoefler, et al (Best Student Paper, SC’19)

Optimal mixed precision matmul
● Suppose in C=A*B, each entry of B, C occupies 1

“word”, A occupies 𝜌𝜌 ≤ 1, what is optimal tiling?
● Still use Loomis-Whitney (𝑀𝑀 = cache size)

○ Break execution into “segments” of x loads/stores
○ #iterations/segment ≤ (#A*#B*#C)1/2

○ 𝜌𝜌#A+#B+#C ≤ x+M bounds data available in segment
○ #iterations/segment ≤ 𝜌𝜌−1/2(𝑥𝑥+𝑀𝑀

3
)3/2

○ #words_moved ≥ 𝜌𝜌
1
2 ∗ 2 ∗ #𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝑀𝑀1/2

● Optimal tiling:
○ A: (𝑀𝑀

𝜌𝜌
)1/2 x (𝑀𝑀

𝜌𝜌
)1/2 , B and C: (𝑀𝑀

𝜌𝜌
)1/2 x (𝑀𝑀 ∗ 𝜌𝜌)1/2

Optimal random*dense matmul

● Suppose each entry of A is a random number
that costs 𝜌𝜌 ≤ 1 to recompute, what is optimal
tiling?
○ 𝜌𝜌 = cost to recompute A(i,j) / cost to load 1 word

from memory
● Similar analysis, tiling for A being lower precision
● Tiling depends on cost of random number

○ Eg Rademacher < Gaussian

● Experiments performed
on a single core of an
Intel Knight’s Landing
(KNL) processor with a
peak performance of
44.8 GFLOPs

● Testbed: 2400 x 2400
square DGEMM with a
micro-kernel shape of 30
x 8, varying tiling to
minimize DRAM -> L2
memory movement

*Micro-kernel shape depends on the number of SIMD registers on KNL (32 of them; we use 30 to accumulate
matrix C, 1 for matrix B, and 1 scratch register).
KNL DGEMM algorithm implemented based on https://doi.org/10.1007/s10586-018-2810-y.

Performance Impact of Varying Tile Shape

MKL (Vendor BLAS)
Performance

https://doi.org/10.1007/s10586-018-2810-y

Making BLAS, LAPACK more resilient to
numerical exceptions

● 1/0, 0/0, sqrt(-1), …can cause problems:
○ Crash of Ariane 5 rocket
○ Naval propulsion failure
○ Crash in a robotic car race:

Reddit post by engineer in
charge of control system:

“During this initialization lap
something happened which
apparently cause the steering
control signal to go to NaN”

“Bug” 1/3 in BLAS: IxAMAX

● IxAMAX returns index of first entry of largest
“absolute value”

● ISAMAX:
○ ISAMAX([0,NaN,2]) = 3 and ISAMAX([NaN,0,2]) = 1
○ NaNs do not propagate consistently

● ICAMAX
○ OV = overflow threshold
○ ICAMAX([OV + i*OV, Inf + i*0]) = 1
○ ICAMAX points to finite entry instead of Inf

“Bug” 2/3 in BLAS: GER and SYR

● GER computes 𝐴𝐴 = 𝐴𝐴 + 𝛼𝛼𝛼𝛼𝑦𝑦𝑇𝑇
● GER checks if 𝑦𝑦 𝑖𝑖 = 0, does not multiply by it

○ Inf/NaN in 𝑥𝑥 does not propagate to column 𝑖𝑖 of 𝐴𝐴
○ If all 𝑦𝑦 𝑖𝑖 = 0, no Infs/NaNs in 𝑥𝑥 propagate
○ No checking for zeros in 𝑥𝑥

● SYR computes 𝐴𝐴 = 𝐴𝐴 + 𝛼𝛼𝛼𝛼𝑥𝑥𝑇𝑇when 𝐴𝐴 = 𝐴𝐴𝑇𝑇
○ Can update upper or lower triangle of 𝐴𝐴
○ Code only checks for 0 in 𝑥𝑥𝑇𝑇, so can get different

answer for upper and lower triangle

“Bug” 3/3 in BLAS: TRSV

● TRSV solves 𝑇𝑇 ∗ 𝑥𝑥 = 𝑏𝑏 or 𝑇𝑇𝑇𝑇 ∗ 𝑥𝑥 = 𝑏𝑏
● TRSV checks for zeros in x like GER and SYR

● Ex: 𝑇𝑇 =
1 𝑁𝑁𝑁𝑁𝑁𝑁 1
0 1 1
0 0 1

, 𝑏𝑏 =
2
1
1

yields 𝑥𝑥 =
1
0
1

● NaN does not propagate
● Solving (𝑇𝑇𝑇𝑇)𝑇𝑇∗ 𝑥𝑥 = 𝑏𝑏 does not check for zeros,

so NaN does propagate
● BLAS Bugs 1,2 and 3 combine so that SGESV

does not propagate NaNs

Future Work

● Detailed plan under construction to identify, fix
these “bugs”

● Will automatically check for Inf and NaN inputs
on most drivers (that already compute norms),
as in LAPACKE

● Possibility: Provide “wrappers” to allow more
extensive checks for Infs and NaNs if requested

A few of the many collaborators
● Vivek Bharadwaj
● Jack Dongarra (happy birthday!), Mark Gates,

Greg Henry, Igor Kozachenko, Julie Langou,
Julien Langou, Xiaoye Li, Piotr Luszczek,
Michael Mahoney, Riley Murray, Jason Riedy,
Weslley Pereira, Peter Tang, …

● Twitter post, including video of robo-car crash:
https://twitter.com/dogryan100/status/1321800
383505657856?s=21

https://twitter.com/dogryan100/status/1321800383505657856?s=21

Extra slides

”Bug” in SGESV

● Assume version that calls GER to update Schur
complement, not newer recursive version that
uses GEMM

● Solve
● ISAMAX chooses 1 as pivot, not NaN
● GER updates 2 – NaN*0 = 2, NaN does not

propagate
● TRSV does not multiply by 0 in x, NaN does not

propagate, get x = [0; .5]

1 0
𝑁𝑁𝑁𝑁𝑁𝑁 2 * x = 01

	New communication-avoiding algorithms,�and fixing old “bugs” in the BLAS and LAPACK
	Outline
	Why avoid communication?
	Sample Speedups
	Sample Speedups
	Optimal mixed precision matmul
	Optimal random*dense matmul
	Performance Impact of Varying Tile Shape
	Making BLAS, LAPACK more resilient to numerical exceptions
	“Bug” 1/3 in BLAS: IxAMAX
	“Bug” 2/3 in BLAS: GER and SYR
	“Bug” 3/3 in BLAS: TRSV
	Future Work
	A few of the many collaborators
	Extra slides
	”Bug” in SGESV

