New communication-avoiding algorithms,
and fixing old “bugs” in the BLAS and LAPACK

Jim Demmel, EECS & Math Depts., UC Berkeley
And many, many others ...

Outline

« Communication-Avoiding Algorithms
- What is communication, and why we want to avoid it
- Examples of past algorithms (linear algebra, ML, ...)
- Optimal tiling for mixed precision matmul
- Optimal tiling for Dense * random (eg Gaussian, *1, ...)

« Fixing old "bugs” in the BLAS and LAPACK, i.e. making

them resilient to exceptions
- Why better exception handling is increasingly important
- Examples of problems: inconsistent answers, car crashes,...
- Tentative plan to fix these problems (comments welcome!)

Why avoid communication?

* Running time of an algorithm is sum of 3 terms:
flops * time_per_flop

words moved / bandwidth
#f messages * latency

} communication

* Time_per_flop (y) << 1/ bandwidth () << latency (a)

Seconds

Hardware Speed Trends
I I I

102
o —+— gamma
. —+— beta (DRAM)
10" alpha (DRAM) | =
++ beta (Ethernet) | 7
+ ——+— alpha (Ethernet) | -
10 B
el
10°
10°®
+.
4) XF\
10 = \ N
\+H\
108 e
\ s
T “‘a}.,,_\‘_l
1 0’9 \ -"‘""-—-‘,_1_7_“‘ &
19710 3 \
a1l ! ! ! \ I ‘ ‘ 4
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

Same story for
saving energy

Patterson & Hennessey, 2019

Sample Speedups

« Doing same operations, just in a different order

— Up to 12x faster for 2.5D dense matmul on 64K core IBM BG/P

— Up to 100x faster for 1.5D sparse-dense matmul on 1536 core Cray XC30
— Up to 6.2x faster for 2.5D All-Pairs-Shortest-Path on 24K core Cray XE6
— Up to 11.8x faster for direct N-body on 32K core IBM BG/P

« Mathematically identical answer, but different algorithm
— Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU
— Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
— Up to 4.2x faster for BiCGStab (MiniGMG bottom solver) on 24K core Cray XE6
— Up to 5.1x faster for coordinate descent LASSO on 3K core Cray XC30

 Different algorithm, different approximate answer

— Up to 16x faster for SVM on a 1536 core Cray XC30
— Up to 135x faster for ImageNet training on 2K Intel KNL nodes

Sample Speedups

« Doing same operations, just in a different order

Ideas adopted by Nervana, “deep learning” startup,
acquired by Intel in August 2016

Kwasniewski, Hoefler, et al (Best Student Paper, SC’19)

« Mathematically identical answer, but different algorithm
SIAG on Supercomputing Best Paper Prize, 2016

(D., Grigori, Hoemmen, Langou)

Released in LAPACK 3.7, Dec 2016
Latest Release: Householder Reconstruction (kozachenko, 0.)
 Different algorithm, different approximate answer

IPDPS 2015 Best Paper Prize (You, D. Czechowski, Song, Vuduc)

ICPP 2018 Best Paper Prize (You, Zhang, Hsieh, D., Keutzer)
2019: Idea (LARS) adopted by industry standard benchmark MLPerf

Optimal mixed precision matmul

o Suppose in C=A*B, each entry of B, C occupies 1
“word”, A occupies p < 1, what is optimal tiling?
o Still use Loomis-Whitney (M = cache size)
- Break execution into “segments” of x loads/stores
- f#iterations/segment < (#A*#B*#C)1/?
o pHA+#B+#C < x+M bounds data available in segment

- #iterations/segment < p~1/2 (%)3/2
1
- #words_moved > pz * 2 #iterations/M/?

. Optimﬂ?l tiIing]:VI .
o A (;)1/2 X (;)1/2 ,Band C: (;)1/2 x (M * p)1/2

Optimal random*dense matmul

« Suppose each entry of A is a random number
that costs p < 1 to recompute, what is optimal
tiling?

- p = cost to recompute A(i,j) / cost to load 1 word
from memory

« Similar analysis, tiling for A being lower precision

« Tiling depends on cost of random number

- Eg Rademacher < Gaussian

Performance Impact of Varying Tile Shape

Performance as a function of L2-Level tile Shape

== Homebrewed GEMM == Completely Free Random Number Generation Fill the RNG Buffer with Consecutive Integers
== Fill the RNG Buffer with a Constant XoRShift RNG

0.80

0.75

Fraction of the Peak

0.65

0.70

- —

——

120 x 480

\

90 x 600 30 x 1500

Tiling Shape

*Micro-kernel shape depends on the number of SIMD registers on KNL (32 of them; we use 30 to accumulate

matrix C, 1 for matrix B, and 1 scratch register).

KNL DGEMM algorithm implemented based on https://doi.org/10.1007/s10586-018-2810-y.

MKL (Vendor BLAS)
Performance

Experiments performed
on a single core of an
Intel Knight’s Landing
(KNL) processor with a
peak performance of
44.8 GFLOPs

Testbed: 2400 x 2400
square DGEMM with a
micro-kernel shape of 30
x 8, varying tiling to
minimize DRAM -> L2
memory movement

https://doi.org/10.1007/s10586-018-2810-y

Making BLAS, LAPACK more resilient to
numerical exceptions

« 1/0, 0/0, sgrt(-1), ...can cause problems:
- Crash of Ariane 5 rocket
- Naval propulsion failure
- Crash in a robotic car race:

Reddit post by engineer in
charge of control system:

“During this initialization lap
something happened which
apparently cause the steering
control signal to go to NaN”

“Bug” 1/3 in BLAS: IXAMAX

« IXAMAX returns index of first entry of largest
“absolute value”

o ISAMAX:
- ISAMAX([0,NaN,2]) = 3 and ISAMAX([NaN,0,2]) =1
- NaNs do not propagate consistently

o ICAMAX
- OV = overflow threshold
- ICAMAX([OV +i*QV, Inf +i*0]) =1
- ICAMAX points to finite entry instead of Inf

“Bug” 2/3 in BLAS: GER and SYR

. GER computes 4 = A + axy!

« GER checks if y(i) = 0, does not multiply by it
- Inf/NaN in x does not propagate to column i of A
- Ifall y(i) = 0, no Infs/NaNs in x propagate
- No checking for zeros in x

. SYRcomputes A = A+ axx'when A = AT
- Can update upper or lower triangle of A

- Code only checks for 0 in x, so can get different
answer for upper and lower triangle

“Bug” 3/3 in BLAS: TRSV

TRSVsolvesTsx =borTl «x=b

TRSV checks for zeros in x like GER and SYR
1 NaN 1 2 1
Ex: T =|0 1 1,b =|1]|yields x =0
0 0] 1 1

NaN does not propagate

Solving (TT)T« x = b does not check for zeros,
so NaN does propagate

BLAS Bugs 1,2 and 3 combine so that SGESV

does not propagate NaNs

Future Work

« Detailed plan under construction to identify, fix
these “bugs”

« Will automatically check for Inf and NaN inputs
on most drivers (that already compute norms),
as in LAPACKE

« Possibility: Provide “wrappers” to allow more
extensive checks for Infs and NaNs if requested

A few of the many collaborators

o Vivek Bharadwaj

« Jack Dongarra (happy birthday!), Mark Gates,
Greg Henry, lgor Kozachenko, Julie Langou,
Julien Langou, Xiaoye Li, Piotr Luszczek,
Michael Mahoney, Riley Murray, Jason Riedy,
Weslley Pereira, Peter Tang, ...

o Twitter post, including video of robo-car crash:
https://twitter.com/dogryan100/status/1321800
3835056578567s=21

https://twitter.com/dogryan100/status/1321800383505657856?s=21

Extra slides

"Bug” in SGESV

Assume version that calls GER to update Schur
complement, not newer recursive version that
uses GEMM

Solve [yay ol *sz

ISAMAX chooses 1 as pivot, not NaN

GER updates 2 — NaN*0 = 2, NaN does not
propagate

TRSV does not multiply by 0 in x, NaN does not
propagate, get x = [0; .5]

	New communication-avoiding algorithms,�and fixing old “bugs” in the BLAS and LAPACK
	Outline
	Why avoid communication?
	Sample Speedups
	Sample Speedups
	Optimal mixed precision matmul
	Optimal random*dense matmul
	Performance Impact of Varying Tile Shape
	Making BLAS, LAPACK more resilient to numerical exceptions
	“Bug” 1/3 in BLAS: IxAMAX
	“Bug” 2/3 in BLAS: GER and SYR
	“Bug” 3/3 in BLAS: TRSV
	Future Work
	A few of the many collaborators
	Extra slides
	”Bug” in SGESV

