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Introduction

1. Problem statement (“many eigenpair computation”):

Let (λi, vi) be the eigenpairs of a n × n symmetric matrix A with the
eigenvalue ordering λ1 ≤ λ2 ≤ · · · ≤ λn. Compute the partial decompo-
sition:

AVne = VneΛne ,

where Λne = diag(λ1, . . . , λne),
Interested in the cases where n is “huge” and ne is “large”

2. Emerging applications:
I electronic structure calculations of Lithium-ion electrolyte,
I graphene,
I dyanmics analysis of viral capsids of supramolecular systems such as Zika and

West Nile viruses (structural biology)
I ...
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Introduction

3. Existing approaches – an incomplete list:

I Full eigenvalue decomposition:
I LAPACK, ScaLAPACK, PLASMA, MAGMA
I ELPA (Eigenvalue Solves for Petaflop Applications), https://elpa.mpcdf.mpg.de/
I EigenExa, https://www.r-ccs.riken.jp/labs/lpnctrt/projects/eigenexa/
I ...
I QDWHeig [Sukkari, Ltaief, Keyes at KAUST]
I SLATE [Gates et al, U. of Tennessee]

Stable, but expensive, O(n2) storage and O(n3) flops

I “Spectrum slicing:”
I SLEPc, https://slepc.upv.es/
I EVSL, http://www.cs.umn.edu/∼saad/software
I FEAST, http://www.ecs.umass.edu/∼polizzi/feast/
I z-Pares, http://zpares.cs.tsukuba.ac.jp/
I ...
I SISLICE [Williams-Young and Yang, LBNL]

Scalable, but issues with duplicate/missing eigenvalues between slices, ...
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Introduction

4. Using Lanczos or any other subspace projection methods for many eigenpairs
are challenging – numerically and computationally:

I needs large subspace (memory) M , e.g., m = 2ne

I require (internal) locking (deflation) to avoid danger of converging again to
the same eigenvalues (O(nm2) flops)
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Introduction

5. Many eigenpair computation is challenging even when vast computational
resources are available.
Case demo: EVSL (http://www.cs.umn.edu/∼saad/software)
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Figure 1: Left: Image of Dengue virus from https://www.rcsb.org/structure/4cct. The
matrix dimension is 307,260 in the elastic network model. Middle: DOS sliced 5, 076 eigenvalues
into 20 subintervals (top) and the relative residual numbers for the computed eigenpairs by
polynomial filtered TRLan (bottom). Right: The degrees of filter polynomials for each slices
(top) and CPU timing for computing eigenpairs for each slices and the longest one took 8, 772
secs (bottom). In addition, the orthogonality of the computed eigenvector V̂ is ‖V̂ T V̂ − I‖F =
O(10−6).

of-states (DOS) for spectrum slicing. The methods for computing the DOS are the classical
kernel polynomial method and Gaussian quadrature by the Lanczos procedure [46, 45]. EVSL
uses a polynomial filtered thick-restart Lanczos (TRLan) to compute the eigenvalues and the
corresponding eigenvectors in each subinterval [43, 42].

Case study. We applied EVSL to compute normal modes (i.e., eigenvectors corresponding the
smallest eigenvalues) of an elastic network model for dynamics analysis of viral capsids of several
different viruses in the RCSB Protein Data Bank (https://www.rcsb.org/structure/4cct),
also see [60, 61, 38]. We used a compute node of Edison at National Energy Research Scientific
Computing Center (NERSC) with OpenMP and the multi-threaded MKL. Figure 1 reports one
of our experimental results. By these experiment results, we observed that (a) EVSL requires
high degrees of filter polynomials for interior slices. This is also confirmed by the developers
of EVSL: “There are situations that very small intervals require a degree of a few thousands.”
[42]. (b) To solve multiple subproblems in parallel, there needs huge amount of memory. For
example, in a test case called riboA of dimension 596,352, if each slice needs 1, 000 Lanczos
vectors, solving all the 31 subproblems for 6,082 eigenpairs in parallel would need about 125GB.
To cut down the cost of memory (and data communication), we can increase the degree of
filter polynomials and/or use restarting strategy. Both strategies could significantly increase the
computational time. (c) There are also a number of issues related to the interfaces, such as how
to handle duplicate and missing eigenvalues and orthogonality between eigenvectors computed
from different slices and how to validate. (d) More critically, it is still an open problem whether it
is possible to completely avoid the factorization of B when computing the DOS of the frequently
encountered generalized eigenvalue problems Ax = λBx. There is a recent report [66] on using
an iterative procedure to approximate the actions of B−1 and B−1/2 on vectors to address this
issue, see Section 3.1.2 for further discussion.

5

Left: Dengue virus model (www.rcsb.org/structure/4cct). n = 307, 260
Middle: DOS sliced 5, 076 eigenvalues into 20 subintervals (top) and the

relative residual norms of eigenpairs (bottom). ‖V̂ T V̂ − I‖F = O(10−6).
Right: Degrees of filter polynomials (top) CPU timing (bot.) for each slices
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Introduction

6. This talk is about an on-going project on

Lanczos + Hotelling deflation + Communication-avoiding

for computing many eigenpairs.

6 / 27



Rest of the talk

I. Hotelling deflation = Explicit External Deflation (EED)

II. Backward stability of EED

III. Communication-avoiding algorithm for MPK (CA-MPK)

IV. Eigensolver sTRLED (= TRLan + EED + CA-MPK)

V. Concluding remarks
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Joint work with

I Jack J. Dongarra, Univ of Tennessee

I Chao-Ping Lin, UC Davis

I Ding Lu, Univ of Kentucky

I Ichitaro Yamazaki, Sandia National Labs.
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I. Explicit External Deflation (EED)

1. Hotelling deflation (EED = Explicit External Deflation)

Let AV = V Λ be the eigen-decomposition of A, partition

V = [Vk Vn−k] and Λ =

[
Λk

Λn−k

]
,

and define
Â = A+ VkΣkV

T
k ,

where Σk = diag(σ1, σ2, . . . , σk) are shifts. Then

(a) The eigenvalues of Â are

λi(Â) =

{
λi + σi for 1 ≤ i ≤ k
λi for k + 1 ≤ i ≤ n

(b) A and Â have the same eigenvectors

Therefore, one can use proper shifts σi to move “computed” eigenvalues
away, and then compute the next batch of “favorite” eigenvalues for an
eigensolver.
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I. Explicit External Deflation

2. Governing equations of the exact EED process: for j = 1, 2, . . . ,

Aj = Aj−1 + σjvjv
T
j = A+ VjΣjV

T
j and A0 = A.

Ajvj+1 = λj+1vj+1

AjVj = Vj(Λj +Σj)

with initial Av1 = λ1v1, where Σj = diag(σ1, . . . , σj).
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I. Explicit External Deflation

3. Benefits of EED:

I Easily incooperated into existing eigensolvers, such as TRLan and ARPACK.

I Small projection subspace dimensions (core memory requirements) even for
many eigenpairs.

I No need to explicitly (re)-orthogonalize the projection subspace to the
computed eigenvectors.

I Accelerated convergence with warm start for Aj .

I Straightforward extension to generalized symmetric eigenproblem Av = λBv:

(A+ σBVkV
T
k B)x = λBx

I Readily exploit structures of A and B, for example, see EED for the linear
response eigenvalue problem [Bai-Li-Lin’17].

I Extensible to other eigenvalue-type problems, such as SVD, sparse PCA.

I Nonlinear eigenvector problem (NEPv) analogy: level shifting
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I. Explicit External Deflation

4. Two key issues of EED:

(a) Numerical linear algebra issue:

Numerical stability with approximate eigenvectors V̂k:

Âj = A+ V̂jΣj V̂
T
j

(b) High performance computing issue:

Cost of matrix powers kernel (MPK) for generating Krylov subspace:[
p0(Âj)v0, p1(Âj)v0, . . . , ps(Âj)v0

]
where {pk(·)} are recursively defined polynomials.
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II. Backward stability of EED

1. Mixed messages from previous work:
[Wilkinson’65], [Parlett’82], [Saad’89], [Jang/Lee’06], ...

2. Governing equations of inexact EED:

Âj = Âj−1 + σj v̂j v̂
T
j = A+ V̂jΣj V̂

T
j

Âj v̂j+1 = λ̂j+1v̂j+1 + ηj+1

Âj V̂j = V̂j(Λ̂j +Σj) + V̂jΣjΦj + Ej

where Â0 = A,

‖ηj+1‖ ≤ tol · ‖A‖,

Φj = utri(V̂ Tj V̂j − Ij),
Ej = [η1, η2, . . . , ηj ].

and tol is prescribed relative residual tolerance.
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II. Backward stability of EED

3. Metrics of backward stability for computed eigenpairs (Λ̂j+1, V̂j+1) with
relative residual tolerance tol:

I The loss of orthogonality

ωj+1 = ‖V̂ Tj+1V̂j+1 − I‖F = O(tol)

I The symmetric backward error norm

δj+1 = min
∆∈H

‖∆‖F = O(tol · ‖A‖),

where

H =
{
∆ | (A+∆)Qj+1 = Qj+1Λ̂j+1, ∆ = ∆T , Qj+1 = orth(V̂j+1)

}
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II. Backward stability of EED

4. Two key quantities associated with the shifts
I Spectral gap

γj ≡ min
λ∈Ij+1,θ∈Jj

|λ− θ|,

where Ij+1 = {λ̂1, . . . , λ̂j , λ̂j+1} is the set of computed eigenvalues, and

Jj = {λ̂1 + σ1, . . . , λ̂j + σj} is the set of computed eigenvalues with shifts.

I Shift-gap ratio

τj ≡
1

γj
· max
1≤i≤j

|σi|.

5. Theorem.
Under mild assumptions, if

γ−1
j ‖A‖ = O(1) and τj = O(1), (1)

then
ωj+1 = O(tol) and δj+1 = O(tol · ‖A‖).

6. Rule of Thumb:
dynamical choice of shifts σj to satisfy the conditions (1).
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II. Backward stability of EED

7. Numerics of TRLED = TRLan + EED:

I Test matrices:

matrix n [λmin, λmax] [λlow, λupper] ne

Laplacian 40, 000 [0, 7.9995] [0, 0.07] 205
worms20 20, 055 [0, 6.0450] [0, 0.05] 289

SiO 33, 401 [−1.6745, 84.3139] [−1.7, 2.0] 182
Si34H36 97, 569 [−1.1586, 42.9396] [−1.2, 0.4] 310
Ge87H76 112, 985 [−1.214, 32.764] [−1.3,−0.0053] 318

Ge99H100 112, 985 [−1.226, 32.703] [−1.3,−0.0096] 372
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II. Backward stability of EED

7. Numerics of TRLED = TRLan + EED, cont’d
I Results:

matrix n̂e jmax ωn̂e
‖Rn̂e

‖F/Anorm CPU time (sec.)
TRLED TRLan

Laplacian 205 60 1.93 · 10−8 6.33 · 10−8 66.5 86.0
worms20 289 86 2.63 · 10−8 7.24 · 10−8 57.3 74.8

SiO 182 41 2.33 · 10−8 4.71 · 10−8 42.4 47.1
Si34H36 310 72 3.41 · 10−8 7.50 · 10−8 309.9 310.4
Ge87H76 318 66 4.08 · 10−8 8.50 · 10−8 388.7 421.0
Ge99H100 372 74 3.65 · 10−8 7.63 · 10−8 501.1 533.4

I EED profile of Ge99H100:

17 / 27



II. Backward stability of EED

7. Numerics of TRLED = TRLan + EED, cont’d

I Observations:

(1) All desired eigenvalues are successfully computed: ne = n̂e

(2) all computed eigenpairs are backward stable:

ωne = O(tol) and δne ≈ ‖Rne‖ = O(tol · ‖A‖).

(3) EED does not slow down, in fact, slightly faster, partially due to smaller “internal”
memory usage and warm start.

8. With proper choice of shifts, Hotelling deflation (EED) would not
compromise numerical stability of an eigensolver.

[Lin, Lu and Bai, arXiv:2105.01298, May 2021]
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III. Communication-avoiding algorithm for computing MPK

1. Sparse-plus-low-rank matrix powers kernel (MPK)

[p0(B)v, p1(B)v, . . . , ps(B)v]

with
B = A+ σUkU

T
k = sparse + low rank

and AUk = UkΛk, UTk Uk = Ik and pj(·) are polynomials defined recursively.

2. For simplicity, consider polynomials {pj(·)} in the monomial basis and
compute the MPK:

[p0(B)v, p1(B)v, . . . , ps(B)v] =
[
x,Bx,B2x, . . . , Bsx

]
≡
[
x(0), x(1), x(2), . . . , x(s)

]
3. Standard MPK algorithm for computing x(1), x(2), . . .

1: x(0) = x;
2: for j = 1 : s do
3: x(j) = Bx(j−1) = Ax(j−1) + σ(Uk(U

T
k x

(j−1)))
4: end for
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III. Communication-avoiding algorithm for computing MPK

4. Performance example

I B = A+ σUkU
T
k , where A is 2D Laplacian and Uk are eigenvectors

I MPK Vs = [p0(B)v0, p1(B)v0, . . . , ps(B)v0]

I Timing of the standard algorithm in MATLAB on a desktop – blue curve.

n = 250 000 and k = 1000
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I Q: what’s the red curve?
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III. Communication-avoiding algorithm for computing MPK

5. An algorithm has two costs:

arithmetic (flops) + movement of data (communication)

6. Communication is the bottleneck on modern architectures.

7. Q: How to exploit the sparse-plus-low-rank matrix structure to reduce
communication cost?

Ans.: use a specialized communication-avoiding algorithm developed by
I Leiserson-Rao-Toledo’97 (“out-of-core”) and
I Knight-Carson-Demmel’13 (“exploiting data sparsity”)
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III. Communication-avoiding algorithm for computing MPK

8. Communication-Avoiding (CA) algorithm for the MPK

1: x(0) = x
2: b0 = UTk x

(0)

3: W
(j)
k = Λjk + σ

∑j
i=1 Λ

i−1
k (Λk + σ)j−i for j = 1 : s− 1,

4: bj =W
(j)
k b0 for j = 1 : s− 1

5: [c0, c1, . . . , cs−1] = Uk[b0, b1, . . . , bs−1]
6: for j = 1 : s do
7: x(j) = Ax(j−1) + σcj−1

8: end for

9. Benefits of CA-MPK algorithm:

I Reduced flops

flopsstd = nnzA · s+ nks+ nks

flopsca = nnzA · s+ nks+ nk +O(k2s)

I Reduced movement of data: Uk is only accessed twice.
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III. Communication-avoiding algorithm for computing MPK

10. Performance example, cont’d:
I B = A+ σUkU

T
k , where A is 2D Laplacian and Uk are eigenvectors

I MPK Vs = [p0(B)v0, p1(B)v0, . . . , ps(B)v0]

I Timing in MATLAB
I Standard algorithm – blue curve
I CA algorithm – red curve

n = 250000 and k = 1000
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III. Communication-avoiding algorithm for computing MPK

10. Performance example, cont’d:

I B = A+ σUkU
T
k , where A is 2D Laplacian and Uk are eigenvectors

I MPK Vs = [p0(B)v0, p1(B)v0, . . . , ps(B)v0]

I Timing in one node (32 cores) of Cori (NERSC)

k = 100 k = 200

11. Rounding error analysis of CA-MPK
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IV. Lanczos algorithm with EED and MPK

1. Lanczos algorithm
I Lanczos process

AQm = QmTm + βmqm+1e
T
m

where

span{Qj} = span{q,Aq, . . . , Am−1q} (Krylov subspace)

I Rayleigh-Ritz approximation

Tmxi = θixi

(λi, vi) ≈ (θi, Qmxi)

2. Lacnzos algorithm is efficient for computing a few exterior eigenvalues (and
eigenvectors).

3. Two main kernels
I Matrix-Vector multiply (SpMV) for generating Krylov subspace: Aq
I Re-orthogonalization for maintaining orthonormal basis vectors: Qj

4. Two variants of Lanczos method:
I Thick-restart Lanczos (TRLan) – control m size
I s-step Lanczos (s-Lanczos) – reduce communication cost by using MPK
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IV. Lanczos algorithm with EED and MPK

5. sTRLED = s-step-TRLan + EED + CA-MPK

6. Preliminary results on strong-parallel scaling of sTRLED on multi-processor
for Si87H76:

n = 240, 369, ne = 700
computing 100 eigenvalues at a time with m = 200 and s = 5
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[Bai, Dongarra, Lu, Yamazaki, IPDPS19]

26 / 27



V. Concluding remarks

1. Many eigenpairs computation in emerging applications, a challenging
problem even when vast computational resources are available.

2. Two techniques discussed in this talk:

I Explicit external deflation (EED) for reliably moving away computed
eigenpairs,

I a communication-avoiding matrix powers kernel (CA-MPK) for fast
sparse-plus-low-rank MPK

3. The capability of being able to efficiently compute large number of
eigenvalues will not just be appealing, but also mandatory for the next
generation of eigensolvers.
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