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Introduction

1. Problem statement ( “many eigenpair computation”):

Let (N\i,v;) be the eigenpairs of a n X m symmetric matrix A with the
eigenvalue ordering A1 < A2 < --- < \,,. Compute the partial decompo-
sition:

AVne = Vne Ane’

where An, = diag(A1,...,\n.),
Interested in the cases where n is "huge” and n. is “large”

2. Emerging applications:
P electronic structure calculations of Lithium-ion electrolyte,
» graphene,
» dyanmics analysis of viral capsids of supramolecular systems such as Zika and

West Nile viruses (structural biology)
> .
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Introduction

3. Existing approaches — an incomplete list:

» Full eigenvalue decomposition:

LAPACK, ScaLAPACK, PLASMA, MAGMA

ELPA (Eigenvalue Solves for Petaflop Applications), https://elpa.mpcdf.mpg.de/
EigenExa, https://www.r-ccs.riken.jp/labs/Ipnctrt/projects/eigenexa/

\AAA/

QDWHeig [Sukkari, Ltaief, Keyes at KAUST]
SLATE [Gates et al, U. of Tennessee]

Stable, but expensive, O(n?) storage and O(n?) flops

>
>

> “Spectrum slicing:"”

SLEPc, https://slepc.upv.es/

EVSL, http://www.cs.umn.edu/~saad/software
FEAST, http://www.ecs.umass.edu/~polizzi/feast/
z-Pares, http://zpares.cs.tsukuba.ac.jp/

VVVYVYY

SISLICE [Williams-Young and Yang, LBNL]
Scalable, but issues with duplicate/missing eigenvalues between slices, ...
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Introduction

4.

Using Lanczos or any other subspace projection methods for many eigenpairs
are challenging — numerically and computationally:

> needs large subspace (memory) M, e.g., m = 2n,

> require (internal) locking (deflation) to avoid danger of converging again to
the same eigenvalues (O(nm?2) flops)
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Introduction

5. Many eigenpair computation is challenging even when vast computational
resources are available.
Case demo: EVSL (http://www.cs.umn.edu/~saad/software)

Degrees of polynomial

# of computed eigenvalues
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Slices Slices

relative residue
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CX] 015 X
eigenvalue Slices

Left: Dengue virus model (www.rcsb.org/structure/4cct). n = 307,260
Middle: DOS sliced 5,076 eigenvalues into 20 subintervals (top) and the
relative residual norms of eigenpairs (bottom). ||[VTV — I|z = O(107%).
Right: Degrees of filter polynomials (top) CPU timing (bot.) for each slices
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Introduction

6. This talk is about an on-going project on
lL.anczos + Hotelling deflation + Communication-avoiding

for computing many eigenpairs.
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Rest of the talk

I. Hotelling deflation = Explicit External Deflation (EED)
Il. Backward stability of EED
[1l. Communication-avoiding algorithm for MPK (CA-MPK)
IV. Eigensolver sTRLED (= TRLan + EED + CA-MPK)

V. Concluding remarks
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Joint work with

» Jack J. Dongarra, Univ of Tennessee
» Chao-Ping Lin, UC Davis
» Ding Lu, Univ of Kentucky

» |chitaro Yamazaki, Sandia National Labs.
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I. Explicit External Deflation (EED)

1. Hotelling deflation (EED = Explicit External Deflation)
Let AV =V A be the eigen-decomposition of A, partition

A
V=[VkVek] and A= [ . - } )

and define N

A=A+ Vi ZpVi,
where X, = diag(o1,02,...,0%) are shifts. Then
(a) The eigenvalues of A are

~ | Xit+o for1<i<k
Ai(A)*{Ai fork+1<i<n
(b) A and A have the same eigenvectors

Therefore, one can use proper shifts o; to move “computed” eigenvalues
away, and then compute the next batch of “favorite” eigenvalues for an
eigensolver.
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. Explicit External Deflation

2. Governing equations of the exact EED process: for j =1,2,...,

Aj :Aj_l +0'j7.)j7.);r:A+‘/jEj‘/jT and A():A
Ajvjtr = Aj410541
A;Vy = Vi(A; + Xj)

with initial Avi = A\jv1, where X; = diag(o1,...,0;).

10/27



I. Explicit External Deflation

3. Benefits of EED:

>

>

Easily incooperated into existing eigensolvers, such as TRLan and ARPACK.

Small projection subspace dimensions (core memory requirements) even for
many eigenpairs.

No need to explicitly (re)-orthogonalize the projection subspace to the
computed eigenvectors.

> Accelerated convergence with warm start for A;.

Straightforward extension to generalized symmetric eigenproblem Av = ABwv:

(A+ 0BV, VI B)z = A\Bz

Readily exploit structures of A and B, for example, see EED for the linear
response eigenvalue problem [Bai-Li-Lin'17].

> Extensible to other eigenvalue-type problems, such as SVD, sparse PCA.

Nonlinear eigenvector problem (NEPv) analogy: level shifting
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I. Explicit External Deflation

4. Two key issues of EED:

(a) Numerical linear algebra issue:

Numerical stability with approximate eigenvectors \7k:

Aj = A+ V2T

(b) High performance computing issue:
Cost of matrix powers kernel (MPK) for generating Krylov subspace:

[po(gj)voy p1(Aj)vo, ..., ps(gj)vo]

where {py(-)} are recursively defined polynomials.
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Il. Backward stability of EED

1.

Mixed messages from previous work:
[Wilkinson'65], [Parlett’82], [Saad'89], [Jang/Lee’'06], ...

Governing equations of inexact EED:
Aj = Ajo1 40,050 = A+ V5,V
A1 = XD +
AV = Vi + 25) + V5,8, + B
where Ay = A,

i1 < tol - ||Al],
8, = wi(V77; - 1),
Ej = [m,m2,...,n4].

and tol is prescribed relative residual tolerance.
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Il. Backward stability of EED

3. Metrics of backward stability for computed eigenpairs (/Tj+17‘/>j+1) with
relative residual tolerance tol:
» The loss of orthogonality
wit1 = [V Vi1 — Ie = O(tol)
» The symmetric backward error norm

8j+1 = min |[Allp = O(tol - | A]),

where

H= {A | (A+2)Qj11 = Qj1dj41, A= AT, Qjy1 = Ofth(‘7j+1)}
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Il. Backward stability of EED

4. Two key quantities associated with the shifts
> Spectral gap

P = min A—0
W= Nea e, | "
where Jj11 = {Xl, . ,Xj,XjH} is the set of computed eigenvalues, and
Ji ={M +o01,...,\j +0;} is the set of computed eigenvalues with shifts.
» Shift-gap ratio
1
T; = — - max |og.
vj 1<i<i

5. Theorem.
Under mild assumptions, if

7 IAll=0(1) and 7 =0(1), (1)

then
Wi+1 = O(tOl) and §j+1 = O(tOl . ||A||)

6. Rule of Thumb:
dynamical choice of shifts o; to satisfy the conditions (1).
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Il. Backward stability of EED

7. Numerics of TRLED = TRLan + EED:

P> Test matrices:

l matrix [ n [Amina Amax} [ [>\10W7 Aupper] [ Ne l
Laplacian 40, 000 [0,7.9995] [0,0.07] 205
worms20 20,055 [0,6.0450] [0,0.05] 289

SiO 33,401 [—1.6745, 84.3139] [-1.7,2.0] 182
Si34H36 97,569 [—1.1586, 42.9396] [-1.2,0.4] 310
Ge87H76 112,985 [—1.214, 32.764] [-1.3,—0.0053] | 318

Ge99H100 | 112,985 [—1.226, 32.703] [—1.3,—0.0096] | 372
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Il. Backward stability of EED

7. Numerics of TRLED = TRLan + EED, cont'd

P> Results:
. N . CPU time (sec.
matrix Te | Jmax wn, | R, ll¥ /Anorn |\ —rrrrs | -|('RLa)n
Laplacian | 205 60 1.93.10°8 6.33-10~8 66.5 86.0
worms20 289 86 2.63-108 7.24-10~8 57.3 74.8
Si0 182 41 2.33-108 4.71-10~8 42.4 47.1
Si34H36 310 72 3.41-10~8 7.50-10~8 309.9 310.4
Ge8THT6 318 66 4.08-10~8 8.50-10~8 388.7 421.0
Ge99H100 | 372 74 3.65-10~8 7.63-10~8 501.1 533.4

» EED profile of Ge99H100:
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Il. Backward stability of EED

7. Numerics of TRLED = TRLan + EED, cont'd
» Observations:

(1) All desired eigenvalues are successfully computed: n. = ne

(2) all computed eigenpairs are backward stable:

wn, = O(tol) and &,, ~ ||Rn,|| = O(tol - |A])).

(3) EED does not slow down, in fact, slightly faster, partially due to smaller “internal”
memory usage and warm start.

8. With proper choice of shifts, Hotelling deflation (EED) would not
compromise numerical stability of an eigensolver.

[Lin, Lu and Bai, arXiv:2105.01298, May 2021]

18/27



I1l. Communication-avoiding algorithm for computing MPK

1. Sparse-plus-low-rank matrix powers kernel (MPK)

[po(B)v, p1(B)v,...,ps(B)v]
with
B = A+ oU,U; = sparse + low rank
and AUy, = U Ax, UL Uy = I and p;(-) are polynomials defined recursively.

2. For simplicity, consider polynomials {p;(-)} in the monomial basis and
compute the MPK:

[po(B)v, p1(B)v,...,ps(B)v] = [z, Bz, B%z,..., B°z]
_ [x<o>’x<1)’ RO ,x(s)}

3. Standard MPK algorithm for computing PN

1: JJ(O) =,

2. for j=1:sdo

3 20 = BplU-1) — g1 +0(Uk(Uka(j_1)))
4: end for
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I1l. Communication-avoiding algorithm for computing MPK

4. Performance example
> B=A+0oU,UT, where A is 2D Laplacian and Uy, are eigenvectors
> MPK Vi = [po(B)vo, p1(B)vo, .- -, ps(B)vo]
» Timing of the standard algorithm in MATLAB on a desktop — blue curve.

n = 250000 and k£ = 1000

cpu timing of sparse+low rank matrix powers kernel
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> Q: what’s the red curve?
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I1l. Communication-avoiding algorithm for computing MPK

5. An algorithm has two costs:
arithmetic (flops) + movement of data (communication)

6. Communication is the bottleneck on modern architectures.

7. Q: How to exploit the sparse-plus-low-rank matrix structure to reduce
communication cost?

Ans.: use a specialized communication-avoiding algorithm developed by

» [ eiserson-Rao-Toledo'97 (“out-of-core” ) and
» Knight-Carson-Demmel’13 (“exploiting data sparsity” )
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I1l. Communication-avoiding algorithm for computing MPK

8. Communication-Avoiding (CA) algorithm for the MPK

1: LL'(O) =x

2: by = UkTm(O)

3 W,gj) = Al +azg:1 AT A +o) T forj=1:5—1,
4 by =W by forj=1:s5—1

5: [Co,Cl,...,Csfﬂ = Uk[bo,bl,...,bsfl]

6: for j =1:5sdo

72 20 = Ag0-D 4 ocj—1

8: end for

9. Benefits of CA-MPK algorithm:

» Reduced flops
flopsgyg = nnzA - s + nks + nks
flops., = nnzA - s + nks +nk + O(k?s)

» Reduced movement of data: Uy is only accessed twice.
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I1l. Communication-avoiding algorithm for computing MPK

10. Performance example, cont'd:
» B = A+ oU,UL, where Ais 2D Laplacian and Uy, are eigenvectors

> MPK Vs = [po(B)vo, p1(B)vo, - .
» Timing in MATLAB

7pS(B)UO]

P Standard algorithm — blue curve
P CA algorithm — red curve

tic-toc in seconds

n = 250000 and k£ = 1000

cpu timing of sparse+low rank matrix powers kernel
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I1l. Communication-avoiding algorithm for computing MPK

10. Performance example, cont'd:

> B=A+oU,UZL, where A is 2D Laplacian and Uy are eigenvectors

> MPK Vs = [po(B)vo,p1(B)vo, . . -

) Ps (B)UO]

» Timing in one node (32 cores) of Cori (NERSC)
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11. Rounding error analysis of CA-MPK
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IV. Lanczos algorithm with EED and MPK

1. Lanczos algorithm

> Lanczos process
AQ'm = Q'me + Brn‘]m«i»le%

where
span{Q;} = span{q, Aq,...,A™ 1q} (Krylov subspace)
» Rayleigh-Ritz approximation
Tmz; = 0;x;
(Xiy vi) = (03, Qmas)
2. Lacnzos algorithm is efficient for computing a few exterior eigenvalues (and
eigenvectors).

3. Two main kernels
> Matrix-Vector multiply (SpMV) for generating Krylov subspace: Ag
> Re-orthogonalization for maintaining orthonormal basis vectors: Q;

4. Two variants of Lanczos method:

» Thick-restart Lanczos (TRLan) — control m size
> s-step Lanczos (s-Lanczos) — reduce communication cost by using MPK
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IV. Lanczos algorithm with EED and MPK

5. STRLED = s-step-TRLan + EED + CA-MPK

6. Preliminary results on strong-parallel scaling of sTRLED on multi-processor
for Si87H76:

n = 240, 369, n. = 700
computing 100 eigenvalues at a time with m = 200 and s =5
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[Bai, Dongarra, Lu, Yamazaki, IPDPS19]
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V. Concluding remarks

1. Many eigenpairs computation in emerging applications, a challenging
problem even when vast computational resources are available.

2. Two techniques discussed in this talk:

> Explicit external deflation (EED) for reliably moving away computed
eigenpairs,

» a communication-avoiding matrix powers kernel (CA-MPK) for fast
sparse-plus-low-rank MPK

3. The capability of being able to efficiently compute large number of
eigenvalues will not just be appealing, but also mandatory for the next
generation of eigensolvers.
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