NA

Manchester Numerical Analysis

Solving Dense Linear Systems:

A Brief History and Future Directions

Nick Higham
Department of Mathematics
The University of Manchester
https://nhigham.com

Slides available at https://bit.ly/dongarra70

New Directions in Numerical Linear Algebra and High
Performance Computing: Celebrating the 70th Birthday
of Jack Dongarra, July 7-8, 2021

http://www.manchester.ac.uk
http://www.maths.manchester.ac.uk/our-research/research-groups/numerical-analysis-and-scientific-computing/numerical-analysis/
http://www.maths.manchester.ac.uk/~higham/
http://www.maths.manchester.ac.uk/
http://www.man.ac.uk
http://www.maths.manchester.ac.uk/~higham
https://bit.ly/dongarra70

. DEPARTMENT 'OF SCIENTI

NATIONAL' PHYSICAL / LABORATORY.
W 4
\

* Progress Rep((rt
‘" on’ the

Automatic Compﬁting Engine

Mathematies Division

Aprll, 1948,

University of Manchester

D.INDUSTRIAL /RESEARCH - .

Nick Higham

Confidential NPL report on the
Automatic Computing Engine
(ACE) gives program
implementing LU factorization
with partial pivoting and iterative
refinement.

Solving Ax = b 2/19

Main Developments

m Backward error analysis.

Exploiting computer architecture.

Exploiting parallelism.

Software engineering.

Exploiting different precisions of arithmetic.

Exploiting structure in A.

University of Manchester Nick Higham Solving Ax = b 3/19

Ax = b Solver

Forsythe & Moler (1967),
Computer Solution of Algebraic
Equations: Algol, Fortran and
PL/I codes for solving Ax = b

Moler (1972): importance of
accessing arrays in column
order in Fortran.

“The efficiency of ... Fortran
programs for matrix computations
can often be improved by reversing
the order of nested loops.

—» LINPACK (1979) — LAPACK (1992)
—» MAGMA (2008), PLASMA (2009) — ...

University of Manchester Nick Higham Solving Ax = b 4/19

Basic Linear Algebra Subprograms (BLAS)

Level 1 Lawson, Hanson, Kincaid & Krogh (1979).
Vector operations.

Level 2 Dongarra, Du Croz, Hammarling & Hanson
(1988). Matrix—vector operations.

Level 3 Dongarra, Du Croz, Hammarling & Duff (1990).
Matrix—matrix operations.

Batched Abdelfattah, Costa, Dongarra, Gates, Haidar,
Hammarling, H, Kurzak, Luszczek, Tomov, and
Zounon (2021): Batched BLAS.

Many independent BLAS operations on small
matrices.

University of Manchester Nick Higham Solving Ax = b 5/19

An interesting feature of the codes is

that they made a very intensive use of subroutines;
the addition of two vectors,

multiplication of a vector by a scalar,

inner products, etc.,

were all coded in this way

—J. H. Wilkinson (1980)

Unrolling Loops in FORTRAN

Dongarra & Hinds (1979)
Unrolled loop
Original 1 for I = 1:4: n

, 2 i = Vi Xi
1 fori=1:1:n 3 i’ {I;/L-Oéjrax-
2 Y= yi+ax y 1 = Vi i
3 end Yire = Yire + aXjo
5 Yit3 = Yiys + aXiys
6 end

Speedups typically about 1.5.

University of Manchester Nick Higham Solving Ax = b 7/19

BLAS on a Microcomputer (H, 1985)

Times in seconds for solving Ax = b with n = 60.
Basic Assembly BLAS Speedup

Commodore 64 1535 298 5.2
BBC Micro 450 162 2.8

Pure Basic times dominated by subscripting!

| "SUBROUTINE SAXPY (N,SA,SX,SYl)"

| VECTOR = VECTOR+CONST*VECTOR: SY() : = SY()+SAxSX ()
| SYS AXPY,N, SA,SX(),SY()

SAXPY JSR GETN

[T

JSR GET3 ! (PTR3) —-> SA

JSR GET2 ! (PTR2) -> SX ()

JSR GET1 ! (PTR1) -> SY ()
LOOPSAX LDA NLOW ! N=0?

ORA NHIGH

BEQ FINSAX

University of Manchester Nick Higham Solving Ax = b 8/19

Growth Factor for Partial Pivoting

k
max; i k \af])l

A= —""7_>1.
Pn(max; j |a,-,-| -

pn < 2" but almost always small in practice (Wilkinson).

University of Manchester Nick Higham Solving Ax = b 9/19

Growth Factor for Partial Pivoting

k
max; i k \af])|

A= —""7_>1.
Pn() max,-7,-|a,-j| -

pn < 2" but almost always small in practice (Wilkinson).
>> gf (randn (1000))
ans =

1.5997e+01

>> gf(gallery(’'randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01
D. Higham, H, & Pranesh (2021): p > —0

4logn

University of Manchester Nick Higham Solving Ax = b 9/19

Growth Factor for Partial Pivoting

k
max; i k \af])l

A= —""7_>1.
Pn() max,-7,-|a,-,-| -

pn < 2" but almost always small in practice (Wilkinson).
>> gf (randn (1000))
ans =

1.5997e+01

>> gf(gallery(’'randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01
D. Higham, H, & Pranesh (2021): p > —0

4logn

Open problem to explain p, behavior! |

University of Manchester Nick Higham Solving Ax = b 9/19

lterative Refinement for Ax = b (classic)

Solve Axy = b by LU factorization in double precision.
Br=b— Ax quad precision
m Solve Ad =r double precision
m x; = fl(xo + d) double precision

(Xo < X1 and iterate as necessary.)

m Programmed in J. H. Wilkinson, Progress Report on
the Automatic Computing Engine (1948).

m Popular up to 1970s, exploiting cheap accumulation of
inner products.

University of Manchester Nick Higham Solving Ax = b 10/19

lterative Refinement (1970s, 1980s)

Solve Axy = b by LU factorization.
mr=>b-Ax
m Solve Ad =r
X = ﬂ(Xo + d)

Everything in double precision.

= Skeel (1980).

m Jankowski & Wozniakowski (1977) for a general
solver.

University of Manchester Nick Higham Solving Ax = b 11/19

lterative Refinement (2000s)

Solve Axy = b by LU factorization in single precision.
Br=b— Ax double precision
m Solve Ad =r single precision
m x; = fl(xo + d) double precision

m Dongarra, Langou et al. (2006).

m Motivated by single precision at least twice as fast as
double on Intel chips, up to 14 times faster on
Sony/Toshiba/IBM Cell processor.

University of Manchester Nick Higham Solving Ax = b 12/19

lterative Refinement in Three Precisions

A, b given in double precision.

Solve Ax = b by LU factorization in half precision.
mr=b—AX quad precision
m Solve Ad = r half precision
my=x+d double precision

m Carson & H (2017, 2018).
m Motivated by availability of half precision on GPUs.

University of Manchester Nick Higham Solving Ax = b 13/19

GMRES-Based lterative Refinement

A, b given in precision u; additional precs uy, up, Uy, Ur.

m Compute LU fact'n (w/pivoting) in prec uy
m Solve LUx; = b in prec u;.
mFori=1,2 ...
mri=b-— Ax prec u,
m Solve MAd;, = Mr; by GMRES in prec u, where
M = U-'L~" and products with MA in prec u,.
m X1 =X+d precu

m Carson & H (2017/18): three precs (ug = u, U, = uy).

m Amestoy, Buttari, H, LExcellent, Mary & Vieublé
(2021): five precs.

m Implemented with u, = u, = Uy = uin MAGMA 2.5.0
(2019), TCAIRS in NVIDIA cuSOLVER library.

University of Manchester Nick Higham Solving Ax = b 14/19

https://icl.utk.edu/magma/software/browse.html?start=0&per=5
https://icl.utk.edu/magma/software/browse.html?start=0&per=5

Performance on One NVIDIA GV100

Haidar et al. (2020). Factor 4 speedup over fp64.

Performance of solvmg Ax b to the FP64 accuracy

22 H FP16 TC >54 dhges\/ 3
2Q || e FP32->64 dsgesv |
TGS | S .
18 T st
16 F e | 104
% 14 :
<_‘:3’-12 - "
=10 :
. 1102
6
4 -
2L
0 — 10°

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k 40k
Matrix size

University of Manchester Nick Higham Solving Ax = b

Future Directions

Mixed precision algorithms. LU: Lopez & Mary (2020).
Hybrid direct/iterative.

Randomization.

Understanding growth factor for (partial) pivoting.

More realistic rounding error bounds: probabilistic
results (Connolly, H & Mary, 2019/20/21, Ipsen &
Zhou, 2020): f(n)u — /f(n)u.

Construction of test matrlces, e.g., for HPL-AI
Benchmark (H & Fasi, 20212).

Exploiting structure.
Using Al?

Slides at https://bit.ly/dongarra70

University of Manchester Nick Higham Solving Ax = b 16/19

https://bit.ly/dongarra70

Daily Mirror, 1952

IT WORKED SO WELL,THOUGH, =5/ LENGTHY ARITHMETICAL
IT’S BEEN PUT INTO REGULAR
USE...CHIEFLY HELPING THE | X 1
DEFENCE PROGRAMME . [SCIENCE AND INDUSTRY ...
@ - i\ SOME WOULD TAKE YEARS
FOR HUMAN BRAINS TO
CALCULATE...

: THE ACE. WILL DO
ELECTRONIC ENGINEERS : ¥ V1N i 3 4 A MONTH'S WORK IN A
AND MATHEMATICIANS A2 Hid i 3 - : MATTER OF MINUTES -
HERE~[T’S REALLY ONLY A PILOT SN oo S ; WE CAN TAKE ON INORK

B i 14 - NOW WE COULDN'T HAVE
VERSION IS BEING BUILTBYA Ay RISSUgs E Ty [{ 3 ATTEMPTED BEFORE....
b BRITISH FIRM ... 3 e - (l | : |\

MR WILKINSON 15 ONE OF &
OUR SENIOR MATHEMATICIANS -
HE'LL TRY TO EXPLAIN HOW THE

THE MACHINE USES PULSES
OF ELECTRICITY GENERATED
AT THE RATE OF A MILLION
PER SECOND-~ THUS ONE PULSE
PASSES A PARTICULAR POINT
EVERY MILLIONTH OF A
SECOND.

IT'LL GIVE THE ANSWER TO
A SIMPLE MULTIPLICATION
SUM LIKE,SAY, 3,971,428,752
X 8,167,292,438 IN ONE FIVE
HUNDREDTH OF A SECOND -
WE'LL HAVE A MACHINE LATER
THOUGH WHICH'LL WORK
TWICE AS FAST AS THIS!

)

... PULSES INDICATE

THE FIGURE'l', THE GAPS
BETWEEN THEM INDICATE

'0'~ WHEN A SUM IS PUT TO THE
MACHINE IT IS TRANSLATED INTO
THIS CODE, CALCULATED, THEN
TRANSLATED BACK INTO FIGURES..

/' MATHEMATICS
WAS ALWAYS MY
TOP SUBJECT...

niversity of

ILLINOIS SearchQ

Magazine

INTO THE TITAN-SIZED WORLD OF

SUPERCOMPUTING

By Amanda Cleary Eastep

The fastest computer in the United States fills a room the size of a basketball
court and generates an electricity bill estimated at $9 million per year. Behind
this titan-sized technology is the combined brainpower of a scientific team at
the largest U.S. Department of Energy laboratory—Oak Ridge National
Laboratory (ORNL)—which includes Jack Dongarra (M.S. CS *73).

In his ORNL role, Dongarra helps develop methods for solving common
problems that occur in scientific computing by designing algorithms and
software that can solve numerical linear algebra problems for the next

Manchester, July 2, 2010

\"

University of Manchester Nick Higham Solving Ax = b 19/19

References |

[4 Patrick Amestoy, Alfredo Buttari, Nicholas J. Higham,
Jean-Yves LExcellent, Theo Mary, and Bastien Vieublé.
Five-precision GMRES-based iterative refinement.
MIMS EPrint 2021.5, Manchester Institute for
Mathematical Sciences, The University of Manchester,
UK, April 2021.

21 pp.

[4 Erin Carson and Nicholas J. Higham.

A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear

systems.
SIAM J. Sci. Comput., 39(6):A2834—A2856, 2017.

University of Manchester Nick Higham Solving Ax = b 1/8

http://eprints.maths.manchester.ac.uk/id/eprint/2807
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918

References li

[4 Erin Carson and Nicholas J. Higham.
Accelerating the solution of linear systems by iterative
refinement in three precisions.
SIAM J. Sci. Comput., 40(2):A817—A847, 2018.

[4 Michael P. Connolly, Nicholas J. Higham, and Theo
Mary.
Stochastic rounding and its probabilistic backward error
analysis.
SIAM J. Sci. Comput., 43(1):A566—A585, 2021.

@ J.J. Dongarra and A. R. Hinds.
Unrolling loops in FORTRAN.
Software—Practice and Experience, 9:216—226, 1979.

University of Manchester Nick Higham Solving Ax = b 2/8

https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/20m1334796
https://doi.org/10.1137/20m1334796
https://doi.org/10.1002/spe.4380090307

References IlI

[4 Massimiliano Fasi and Nicholas J. Higham.
Generating extreme-scale matrices with specified
singular values or condition numbers.

SIAM J. Sci. Comput., 43(1):A663—A684, 2021.

[Massimiliano Fasi and Nicholas J. Higham.
Matrices with tunable infinity-norm condition number
and no need for pivoting in LU factorization.
SIAM J. Matrix Anal. Appl., 42(1):417—-435, 2021.

University of Manchester Nick Higham Solving Ax = b 3/8

https://doi.org/10.1137/20M1327938
https://doi.org/10.1137/20M1327938
https://doi.org/10.1137/20m1357238
https://doi.org/10.1137/20m1357238

References IV

(4 Azzam Haidar, Stanimire Tomov, Jack Dongarra, and
Nicholas J. Higham.
Harnessing GPU tensor cores for fast FP16 arithmetic
to speed up mixed-precision iterative refinement
solvers.
In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and
Analysis, SC18 (Dallas, TX), Piscataway, NJ, USA,
2018, pages 47:1—47:11. IEEE.

@ Desmond J. Higham, Nicholas J. Higham, and Srikara
Pranesh.
Random matrices generating large growth in LU
factorization with pivoting.
SIAM J. Matrix Anal. Appl., 42(1):185-201, 2021.

University of Manchester Nick Higham Solving Ax = b 4/8

https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1137/20M1338149
https://doi.org/10.1137/20M1338149

[4 Nicholas J. Higham.
Matrix computations in Basic on a microcomputer.
Numerical Analysis Report No. 101, Department of
Mathematics, University of Manchester, Manchester,
M13 9PL, UK, June 1985.
62 pp.
Reissued as MIMS EPrint 2013.51, Manchester
Institute for Mathematical Sciences, The University of
Manchester, UK, October 2013.

@ Nicholas J. Higham.
Matrix computations in Basic on a microcomputer.
IMA Bulletin, 22(1/2):13—-20, 1986.

University of Manchester Nick Higham Solving Ax = b 5/8

http://eprints.ma.man.ac.uk/2029/

References VI

[4 Nicholas J. Higham and Theo Mary.
A new approach to probabilistic rounding error analysis.
SIAM J. Sci. Comput., 41(5):A2815—A2835, 2019.

[4 Nicholas J. Higham and Theo Mary.
Sharper probabilistic backward error analysis for basic
linear algebra kernels with random data.
SIAM J. Sci. Comput., 42(5):A3427—-A3446, 2020.

University of Manchester Nick Higham Solving Ax = b 6/8

https://doi.org/10.1137/18M1226312
https://doi.org/10.1137/20M1314355
https://doi.org/10.1137/20M1314355

References VI

(4 Julie Langou, Julien Langou, Piotr Luszczek, Jakub
Kurzak, Alfredo Buttari, and Jack Dongarra.
Exploiting the performance of 32 bit floating point
arithmetic in obtaining 64 bit accuracy (revisiting
iterative refinement for linear systems).
In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, November 2006.

[4 Florent Lopez and Theo Mary.
Mixed precision LU factorization on GPU tensor cores:
Reducing data movement and memory footprint.
MIMS EPrint 2020.20, Manchester Institute for
Mathematical Sciences, The University of Manchester,
UK, September 2020.

20 pp.

University of Manchester Nick Higham Solving Ax = b 7/8

https://doi.org/10.1109/SC.2006.30
https://doi.org/10.1109/SC.2006.30
https://doi.org/10.1109/SC.2006.30
http://eprints.maths.manchester.ac.uk/2782/
http://eprints.maths.manchester.ac.uk/2782/

References VI

[4 Cleve B. Moler.
Matrix computations with Fortran and paging.
Comm. ACM, 15(4):268-270, 1972.

4 J. H. Wilkinson.
Progress report on the Automatic Computing Engine.
Report MA/17/1024, Mathematics Division, Department
of Scientific and Industrial Research, National Physical
Laboratory, Teddington, UK, April 1948.
127 pp.

University of Manchester Nick Higham Solving Ax = b 8/8

https://doi.org/10.1145/361284.361297
http://www.alanturing.net/turing_archive/archive/l/l10/l10.php

	Appendix

