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Main Developments

m Backward error analysis.

Exploiting computer architecture.

Exploiting parallelism.

Software engineering.

Exploiting different precisions of arithmetic.

Exploiting structure in A.
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Ax = b Solver

Forsythe & Moler (1967),
Computer Solution of Algebraic
Equations: Algol, Fortran and
PL/I codes for solving Ax = b

Moler (1972): importance of
accessing arrays in column
order in Fortran.

“The efficiency of ... Fortran
programs for matrix computations
can often be improved by reversing
the order of nested loops.

—» LINPACK (1979) — LAPACK (1992)
—» MAGMA (2008), PLASMA (2009) — ...
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Basic Linear Algebra Subprograms (BLAS)

Level 1 Lawson, Hanson, Kincaid & Krogh (1979).
Vector operations.

Level 2 Dongarra, Du Croz, Hammarling & Hanson
(1988). Matrix—vector operations.

Level 3 Dongarra, Du Croz, Hammarling & Duff (1990).
Matrix—matrix operations.

Batched Abdelfattah, Costa, Dongarra, Gates, Haidar,
Hammarling, H, Kurzak, Luszczek, Tomov, and
Zounon (2021): Batched BLAS.

Many independent BLAS operations on small
matrices.
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An interesting feature of the codes is

that they made a very intensive use of subroutines;
the addition of two vectors,

multiplication of a vector by a scalar,

inner products, etc.,

were all coded in this way

—J. H. Wilkinson (1980)



Unrolling Loops in FORTRAN

Dongarra & Hinds (1979)
Unrolled loop
Original 1 for I = 1:4: n

, 2 i = Vi Xi
1 fori=1:1:n 3 i’ {I;/L-Oéjrax-
2 Y= yi+ax y 1 = Vi i
3 end Yire = Yire + aXjo
5 Yit3 = Yiys + aXiys
6 end

Speedups typically about 1.5.
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BLAS on a Microcomputer (H, 1985)

Times in seconds for solving Ax = b with n = 60.
Basic Assembly BLAS Speedup

Commodore 64 1535 298 5.2
BBC Micro 450 162 2.8

Pure Basic times dominated by subscripting!

| "SUBROUTINE SAXPY (N,SA,SX,SYl)"

| VECTOR = VECTOR+CONST*VECTOR: SY() : = SY()+SAxSX ()
| SYS AXPY,N, SA,SX(),SY()

SAXPY JSR GETN

[T

JSR GET3 ! (PTR3) —-> SA

JSR GET2 ! (PTR2) -> SX ()

JSR GET1 ! (PTR1) -> SY ()
LOOPSAX LDA NLOW ! N=0?

ORA NHIGH

BEQ FINSAX
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Growth Factor for Partial Pivoting

k
max; i k \af] )l

A= —""7_>1.
Pn( max; j |a,-,-| -

pn < 2" but almost always small in practice (Wilkinson).
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Growth Factor for Partial Pivoting

k
max; i k \af] )|

A= —""7_>1.
Pn( ) max,-7,-|a,-j| -

pn < 2" but almost always small in practice (Wilkinson).
>> gf (randn (1000))
ans =

1.5997e+01

>> gf(gallery(’'randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01
D. Higham, H, & Pranesh (2021): p > —0

4logn
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Growth Factor for Partial Pivoting

k
max; i k \af] )l

A= —""7_>1.
Pn( ) max,-7,-|a,-,-| -

pn < 2" but almost always small in practice (Wilkinson).
>> gf (randn (1000))
ans =

1.5997e+01

>> gf(gallery(’'randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01
D. Higham, H, & Pranesh (2021): p > —0

4logn

Open problem to explain p, behavior! |
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lterative Refinement for Ax = b (classic)

Solve Axy = b by LU factorization in double precision.
Br=b— Ax quad precision
m Solve Ad =r double precision
m x; = fl(xo + d) double precision

(Xo < X1 and iterate as necessary.)

m Programmed in J. H. Wilkinson, Progress Report on
the Automatic Computing Engine (1948).

m Popular up to 1970s, exploiting cheap accumulation of
inner products.
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lterative Refinement (1970s, 1980s)

Solve Axy = b by LU factorization.
mr=>b-Ax
m Solve Ad =r
X = ﬂ(Xo + d)

Everything in double precision.

= Skeel (1980).

m Jankowski & Wozniakowski (1977) for a general
solver.

University of Manchester Nick Higham Solving Ax = b 11/19



lterative Refinement (2000s)

Solve Axy = b by LU factorization in single precision.
Br=b— Ax double precision
m Solve Ad =r single precision
m x; = fl(xo + d) double precision

m Dongarra, Langou et al. (2006).

m Motivated by single precision at least twice as fast as
double on Intel chips, up to 14 times faster on
Sony/Toshiba/IBM Cell processor.
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lterative Refinement in Three Precisions

A, b given in double precision.

Solve Ax = b by LU factorization in half precision.
mr=b—AX quad precision
m Solve Ad = r half precision
my=x+d double precision

m Carson & H (2017, 2018).
m Motivated by availability of half precision on GPUs.
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GMRES-Based lterative Refinement

A, b given in precision u; additional precs uy, up, Uy, Ur.

m Compute LU fact'n (w/pivoting) in prec uy
m Solve LUx; = b in prec u;.
mFori=1,2 ...
mri=b-— Ax prec u,
m Solve MAd;, = Mr; by GMRES in prec u, where
M = U-'L~" and products with MA in prec u,.
m X1 =X+d precu

m Carson & H (2017/18): three precs (ug = u, U, = uy).

m Amestoy, Buttari, H, LExcellent, Mary & Vieublé
(2021): five precs.

m Implemented with u, = u, = Uy = uin MAGMA 2.5.0
(2019), TCAIRS in NVIDIA cuSOLVER library.
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https://icl.utk.edu/magma/software/browse.html?start=0&per=5
https://icl.utk.edu/magma/software/browse.html?start=0&per=5

Performance on One NVIDIA GV100

Haidar et al. (2020). Factor 4 speedup over fp64.

Performance of solvmg Ax b to the FP64 accuracy

22 H FP16 TC >54 dhges\/ 3
2Q || e FP32->64 dsgesv |
TGS | S .
18 T st
16 F e | 104
% 14 :
<_‘:3’-12 - "
=10 :
. 1102
6
4 -
2L
0 — 10°

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k 40k
Matrix size

University of Manchester Nick Higham Solving Ax = b



Future Directions

Mixed precision algorithms. LU: Lopez & Mary (2020).
Hybrid direct/iterative.

Randomization.

Understanding growth factor for (partial) pivoting.

More realistic rounding error bounds: probabilistic
results (Connolly, H & Mary, 2019/20/21, Ipsen &
Zhou, 2020): f(n)u — /f(n)u.

Construction of test matrlces, e.g., for HPL-AI
Benchmark (H & Fasi, 20212).

Exploiting structure.
Using Al?

Slides at https://bit.ly/dongarra70
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Daily Mirror, 1952

IT WORKED SO WELL,THOUGH, =5/ LENGTHY ARITHMETICAL
IT’S BEEN PUT INTO REGULAR
USE...CHIEFLY HELPING THE | X 1
DEFENCE PROGRAMME . [ SCIENCE AND INDUSTRY ...
@ - i\ SOME WOULD TAKE YEARS
FOR HUMAN BRAINS TO
CALCULATE...

: THE ACE. WILL DO
ELECTRONIC ENGINEERS : ¥ V1N i 3 4 A MONTH'S WORK IN A
AND MATHEMATICIANS A2 Hid i 3 - : MATTER OF MINUTES -
HERE~[T’S REALLY ONLY A PILOT SN oo S ; WE CAN TAKE ON INORK

B i 14 - NOW WE COULDN'T HAVE
VERSION IS BEING BUILTBYA Ay RISSUgs E Ty [ { 3 ATTEMPTED BEFORE....
b BRITISH FIRM ... 3 e - (l | : |\

MR WILKINSON 15 ONE OF &
OUR SENIOR MATHEMATICIANS -
HE'LL TRY TO EXPLAIN HOW THE

THE MACHINE USES PULSES
OF ELECTRICITY GENERATED
AT THE RATE OF A MILLION
PER SECOND-~ THUS ONE PULSE
PASSES A PARTICULAR POINT
EVERY MILLIONTH OF A
SECOND.

IT'LL GIVE THE ANSWER TO
A SIMPLE MULTIPLICATION
SUM LIKE,SAY, 3,971,428,752
X 8,167,292,438 IN ONE FIVE
HUNDREDTH OF A SECOND -
WE'LL HAVE A MACHINE LATER
THOUGH WHICH'LL WORK
TWICE AS FAST AS THIS!

)

... PULSES INDICATE

THE FIGURE'l', THE GAPS
BETWEEN THEM INDICATE

'0'~ WHEN A SUM IS PUT TO THE
MACHINE IT IS TRANSLATED INTO
THIS CODE, CALCULATED, THEN
TRANSLATED BACK INTO FIGURES..

/' MATHEMATICS
WAS ALWAYS MY
TOP SUBJECT...

niversity of
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INTO THE TITAN-SIZED WORLD OF

SUPERCOMPUTING

By Amanda Cleary Eastep

The fastest computer in the United States fills a room the size of a basketball
court and generates an electricity bill estimated at $9 million per year. Behind
this titan-sized technology is the combined brainpower of a scientific team at
the largest U.S. Department of Energy laboratory—Oak Ridge National
Laboratory (ORNL)—which includes Jack Dongarra (M.S. CS *73).

In his ORNL role, Dongarra helps develop methods for solving common
problems that occur in scientific computing by designing algorithms and
software that can solve numerical linear algebra problems for the next



Manchester, July 2, 2010

\"
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