
Research Matters

February 25, 2009

Nick Higham
Director of Research

School of Mathematics

1 / 6

Solving Dense Linear Systems:
A Brief History and Future Directions

Nick Higham
Department of Mathematics

The University of Manchester
https://nhigham.com

Slides available at https://bit.ly/dongarra70

New Directions in Numerical Linear Algebra and High
Performance Computing: Celebrating the 70th Birthday

of Jack Dongarra, July 7–8, 2021

http://www.manchester.ac.uk
http://www.maths.manchester.ac.uk/our-research/research-groups/numerical-analysis-and-scientific-computing/numerical-analysis/
http://www.maths.manchester.ac.uk/~higham/
http://www.maths.manchester.ac.uk/
http://www.man.ac.uk
http://www.maths.manchester.ac.uk/~higham
https://bit.ly/dongarra70

Wilkinson (1948)

Confidential NPL report on the
Automatic Computing Engine
(ACE) gives program
implementing LU factorization
with partial pivoting and iterative
refinement.

University of Manchester Nick Higham Solving Ax = b 2 / 19

Main Developments

Backward error analysis.

Exploiting computer architecture.

Exploiting parallelism.

Software engineering.

Exploiting different precisions of arithmetic.

Exploiting structure in A.

University of Manchester Nick Higham Solving Ax = b 3 / 19

Ax = b Solver
Forsythe & Moler (1967),
Computer Solution of Algebraic
Equations: Algol, Fortran and
PL/I codes for solving Ax = b

Moler (1972): importance of
accessing arrays in column
order in Fortran.
“The efficiency of . . . Fortran
programs for matrix computations
can often be improved by reversing
the order of nested loops.

Numerical W.P. Timlake
Mathematics Editor

Matrix
Computations
with Fortran and
Paging
C l e v e B. M o l e r
U n i v e r s i t y o f M i c h i g a n *

The efficiency of conventional Fortran programs for
matrix computations can often be improved by reversing
the order of nested loops. Such modifications produce
modest savings in many common situations and very
significant savings for large problems run under an
operating system which uses paging.

Key Words and Phrases: matrix algorithms, linear
equations, Fortran, paged memory, virtual memory,
array processing

CR Categories: 4.22, 4.32, 5.14

Copyright O 1972,Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or

part of this material is granted, provided that reference is made
to this publication, to its date of issue, and to the fact that re-
printing privileges were granted by permission of the Association
for Computing Machinery.

* Department of Mathematics, Ann Arbor, MI 48104. This
work was supported by the Office of Naval Research under
Contract NR 044-377.

268

1. Introduction

Another Fortran subroutine for solving general sim-
ultaneous linear equations is included in this issue's Al-
gorithm section [6]. We feel justified in contributing to
what is already an oversupply of such routines because
this particular one is more efficient than its competitors,
including those in Forsythe and Moler [1]. The increase
in efficiency is substantial when the new routine is used
on large matrices under a multiuser or virtual memory
operating system which employs some kind of paging
scheme for dynamic storage allocation. The increase may
not be as large in other operating situations, but we
know of no case where the new routines are slower than
other Fortran programs.

The increased efficiency is obtained without any cor-
responding loss of accuracy, applicability, ease of use,
portability, or other desirable program features.

The routine uses Gaussian elimination which, in its
conventional form, involves operations on the rows of
a matrix. But Fortran in its conventional form, stores
two-dimensional arrays by columns [2, Sec. 7.2.1.1.1].
The data access in conventional programs operating
row-wise within a matrix thus involves successive mem-
ory references to locations separated from each other
by a large increment which depends upon the declared
dimension of the array.

Moreover, many modern operating systems automati-
cally partition the array storage into a number of separate
pages and swap these pages in and out of a large second-
ary memory [3,4,5]. The user is relieved of any respon-
sibility for controlling this swapping. When the conven-
tional programs above are used on matrices which occupy
many pages, an excessive number of page swaps may
be required. In order to ensure that contiguously stored
data elements are referenced sequentially, one need only

Communications April 1972
of Volume 15
the ACM Number 4

→ LINPACK (1979)→ LAPACK (1992)
→ MAGMA (2008), PLASMA (2009)→ . . .

University of Manchester Nick Higham Solving Ax = b 4 / 19

Basic Linear Algebra Subprograms (BLAS)

Level 1 Lawson, Hanson, Kincaid & Krogh (1979).
Vector operations.

Level 2 Dongarra, Du Croz, Hammarling & Hanson
(1988). Matrix–vector operations.

Level 3 Dongarra, Du Croz, Hammarling & Duff (1990).
Matrix–matrix operations.

Batched Abdelfattah, Costa, Dongarra, Gates, Haidar,
Hammarling, H, Kurzak, Luszczek, Tomov, and
Zounon (2021): Batched BLAS.
Many independent BLAS operations on small
matrices.

University of Manchester Nick Higham Solving Ax = b 5 / 19

An interesting feature of the codes is
that they made a very intensive use of subroutines;

the addition of two vectors,
multiplication of a vector by a scalar,

inner products, etc.,
were all coded in this way

— J. H. Wilkinson (1980)

Unrolling Loops in FORTRAN

Dongarra & Hinds (1979)

Original
1 for i = 1:1:n
2 yi = yi + αxi

3 end

Unrolled loop
1 for i = 1:4:n
2 yi = yi + αxi

3 yi+1 = yi+1 + αxi+1

4 yi+2 = yi+2 + αxi+2

5 yi+3 = yi+3 + αxi+3

6 end

Speedups typically about 1.5.

University of Manchester Nick Higham Solving Ax = b 7 / 19

BLAS on a Microcomputer (H, 1985)

Times in seconds for solving Ax = b with n = 60.

Basic Assembly BLAS Speedup

Commodore 64 1535 298 5.2
BBC Micro 450 162 2.8

Pure Basic times dominated by subscripting!
| "SUBROUTINE SAXPY (N,SA,SX,SYl)"
| VECTOR = VECTOR+CONST*VECTOR: SY() : = SY()+SA*SX ()
| SYS AXPY,N,SA,SX(),SY()
SAXPY JSR GETN
!****

JSR GET3 ! (PTR3) -> SA
JSR GET2 ! (PTR2) -> SX ()
JSR GET1 ! (PTR1) -> SY ()

LOOPSAX LDA NLOW ! N=0?
ORA NHIGH
BEQ FINSAX

...

University of Manchester Nick Higham Solving Ax = b 8 / 19

Growth Factor for Partial Pivoting

ρn(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij |

≥ 1.

ρn ≤ 2n−1 but almost always small in practice (Wilkinson).

>> gf(randn(1000))
ans =

1.5997e+01
>> gf(gallery(’randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01

D. Higham, H, & Pranesh (2021): ρn &
n

4 log n
.

Open problem to explain ρn behavior!

University of Manchester Nick Higham Solving Ax = b 9 / 19

Growth Factor for Partial Pivoting

ρn(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij |

≥ 1.

ρn ≤ 2n−1 but almost always small in practice (Wilkinson).
>> gf(randn(1000))
ans =

1.5997e+01
>> gf(gallery(’randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01

D. Higham, H, & Pranesh (2021): ρn &
n

4 log n
.

Open problem to explain ρn behavior!

University of Manchester Nick Higham Solving Ax = b 9 / 19

Growth Factor for Partial Pivoting

ρn(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij |

≥ 1.

ρn ≤ 2n−1 but almost always small in practice (Wilkinson).
>> gf(randn(1000))
ans =

1.5997e+01
>> gf(gallery(’randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01

D. Higham, H, & Pranesh (2021): ρn &
n

4 log n
.

Open problem to explain ρn behavior!

University of Manchester Nick Higham Solving Ax = b 9 / 19

Iterative Refinement for Ax = b (classic)

Solve Ax0 = b by LU factorization in double precision.
r = b − Ax0 quad precision
Solve Ad = r double precision
x1 = fl(x0 + d) double precision

(x0 ← x1 and iterate as necessary.)

Programmed in J. H. Wilkinson, Progress Report on
the Automatic Computing Engine (1948).
Popular up to 1970s, exploiting cheap accumulation of
inner products.

University of Manchester Nick Higham Solving Ax = b 10 / 19

Iterative Refinement (1970s, 1980s)

Solve Ax0 = b by LU factorization.
r = b − Ax0

Solve Ad = r
x1 = fl(x0 + d)

Everything in double precision.

Skeel (1980).
Jankowski & Woźniakowski (1977) for a general
solver.

University of Manchester Nick Higham Solving Ax = b 11 / 19

Iterative Refinement (2000s)

Solve Ax0 = b by LU factorization in single precision.
r = b − Ax0 double precision
Solve Ad = r single precision
x1 = fl(x0 + d) double precision

Dongarra, Langou et al. (2006).
Motivated by single precision at least twice as fast as
double on Intel chips, up to 14 times faster on
Sony/Toshiba/IBM Cell processor.

University of Manchester Nick Higham Solving Ax = b 12 / 19

Iterative Refinement in Three Precisions
A,b given in double precision.

Solve Ax = b by LU factorization in half precision.
r = b − Ax̂ quad precision
Solve Ad = r half precision
y = x̂ + d double precision

Carson & H (2017, 2018).
Motivated by availability of half precision on GPUs.

University of Manchester Nick Higham Solving Ax = b 13 / 19

GMRES-Based Iterative Refinement
A, b given in precision u; additional precs uf , up, ug, ur .

Compute LU fact’n (w/pivoting) in prec uf

Solve L̃Ũx1 = b in prec uf .
For i = 1,2, . . .

ri = b − Axi prec ur

Solve MAdi = Mri by GMRES in prec ug where

M = Ũ−1L̃−1 and products with MA in prec up.
xi+1 = xi + di prec u

Carson & H (2017/18): three precs (ug = u, up = ur).
Amestoy, Buttari, H, L’Excellent, Mary & Vieublé
(2021): five precs.
Implemented with ur = up = ug = u in MAGMA 2.5.0
(2019), TCAIRS in NVIDIA cuSOLVER library.

University of Manchester Nick Higham Solving Ax = b 14 / 19

https://icl.utk.edu/magma/software/browse.html?start=0&per=5
https://icl.utk.edu/magma/software/browse.html?start=0&per=5

Performance on One NVIDIA GV100
Haidar et al. (2020). Factor 4 speedup over fp64.

2k4k6k8k10k 14k 18k 22k 26k 30k 34k 40k
Matrix size

0

2

4

6

8

10

12

14

16

18

20

22

T
fl

o
p

/s
Performance of solving Ax=b to the FP64 accuracy

2
3 2

3 2
3 2

3 2
3 2

3
2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3FP16-TC->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

 100

 101

 102

 103

 104

 105

University of Manchester Nick Higham Solving Ax = b 15 / 19

Future Directions

Mixed precision algorithms. LU: Lopez & Mary (2020).
Hybrid direct/iterative.
Randomization.
Understanding growth factor for (partial) pivoting.
More realistic rounding error bounds: probabilistic
results (Connolly, H & Mary, 2019/20/21, Ipsen &
Zhou, 2020): f (n)u →

√
f (n)u.

Construction of test matrices, e.g., for HPL-AI
Benchmark (H & Fasi, 20212).
Exploiting structure.
Using AI?

Slides at https://bit.ly/dongarra70

University of Manchester Nick Higham Solving Ax = b 16 / 19

https://bit.ly/dongarra70

Daily Mirror, 1952

University of Manchester Nick Higham Solving Ax = b 17 / 19

Manchester, July 2, 2010

University of Manchester Nick Higham Solving Ax = b 19 / 19

References I

Patrick Amestoy, Alfredo Buttari, Nicholas J. Higham,
Jean-Yves L’Excellent, Theo Mary, and Bastien Vieublé.
Five-precision GMRES-based iterative refinement.
MIMS EPrint 2021.5, Manchester Institute for
Mathematical Sciences, The University of Manchester,
UK, April 2021.
21 pp.

Erin Carson and Nicholas J. Higham.
A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear
systems.
SIAM J. Sci. Comput., 39(6):A2834–A2856, 2017.

University of Manchester Nick Higham Solving Ax = b 1 / 8

http://eprints.maths.manchester.ac.uk/id/eprint/2807
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918

References II

Erin Carson and Nicholas J. Higham.
Accelerating the solution of linear systems by iterative
refinement in three precisions.
SIAM J. Sci. Comput., 40(2):A817–A847, 2018.

Michael P. Connolly, Nicholas J. Higham, and Theo
Mary.
Stochastic rounding and its probabilistic backward error
analysis.
SIAM J. Sci. Comput., 43(1):A566–A585, 2021.

J. J. Dongarra and A. R. Hinds.
Unrolling loops in FORTRAN.
Software—Practice and Experience, 9:216–226, 1979.

University of Manchester Nick Higham Solving Ax = b 2 / 8

https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/20m1334796
https://doi.org/10.1137/20m1334796
https://doi.org/10.1002/spe.4380090307

References III

Massimiliano Fasi and Nicholas J. Higham.
Generating extreme-scale matrices with specified
singular values or condition numbers.
SIAM J. Sci. Comput., 43(1):A663–A684, 2021.

Massimiliano Fasi and Nicholas J. Higham.
Matrices with tunable infinity-norm condition number
and no need for pivoting in LU factorization.
SIAM J. Matrix Anal. Appl., 42(1):417–435, 2021.

University of Manchester Nick Higham Solving Ax = b 3 / 8

https://doi.org/10.1137/20M1327938
https://doi.org/10.1137/20M1327938
https://doi.org/10.1137/20m1357238
https://doi.org/10.1137/20m1357238

References IV

Azzam Haidar, Stanimire Tomov, Jack Dongarra, and
Nicholas J. Higham.
Harnessing GPU tensor cores for fast FP16 arithmetic
to speed up mixed-precision iterative refinement
solvers.
In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and
Analysis, SC18 (Dallas, TX), Piscataway, NJ, USA,
2018, pages 47:1–47:11. IEEE.

Desmond J. Higham, Nicholas J. Higham, and Srikara
Pranesh.
Random matrices generating large growth in LU
factorization with pivoting.
SIAM J. Matrix Anal. Appl., 42(1):185–201, 2021.

University of Manchester Nick Higham Solving Ax = b 4 / 8

https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1137/20M1338149
https://doi.org/10.1137/20M1338149

References V

Nicholas J. Higham.
Matrix computations in Basic on a microcomputer.
Numerical Analysis Report No. 101, Department of
Mathematics, University of Manchester, Manchester,
M13 9PL, UK, June 1985.
62 pp.
Reissued as MIMS EPrint 2013.51, Manchester
Institute for Mathematical Sciences, The University of
Manchester, UK, October 2013.

Nicholas J. Higham.
Matrix computations in Basic on a microcomputer.
IMA Bulletin, 22(1/2):13–20, 1986.

University of Manchester Nick Higham Solving Ax = b 5 / 8

http://eprints.ma.man.ac.uk/2029/

References VI

Nicholas J. Higham and Theo Mary.
A new approach to probabilistic rounding error analysis.
SIAM J. Sci. Comput., 41(5):A2815–A2835, 2019.

Nicholas J. Higham and Theo Mary.
Sharper probabilistic backward error analysis for basic
linear algebra kernels with random data.
SIAM J. Sci. Comput., 42(5):A3427–A3446, 2020.

University of Manchester Nick Higham Solving Ax = b 6 / 8

https://doi.org/10.1137/18M1226312
https://doi.org/10.1137/20M1314355
https://doi.org/10.1137/20M1314355

References VII

Julie Langou, Julien Langou, Piotr Luszczek, Jakub
Kurzak, Alfredo Buttari, and Jack Dongarra.
Exploiting the performance of 32 bit floating point
arithmetic in obtaining 64 bit accuracy (revisiting
iterative refinement for linear systems).
In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, November 2006.

Florent Lopez and Theo Mary.
Mixed precision LU factorization on GPU tensor cores:
Reducing data movement and memory footprint.
MIMS EPrint 2020.20, Manchester Institute for
Mathematical Sciences, The University of Manchester,
UK, September 2020.
20 pp.

University of Manchester Nick Higham Solving Ax = b 7 / 8

https://doi.org/10.1109/SC.2006.30
https://doi.org/10.1109/SC.2006.30
https://doi.org/10.1109/SC.2006.30
http://eprints.maths.manchester.ac.uk/2782/
http://eprints.maths.manchester.ac.uk/2782/

References VIII

Cleve B. Moler.
Matrix computations with Fortran and paging.
Comm. ACM, 15(4):268–270, 1972.

J. H. Wilkinson.
Progress report on the Automatic Computing Engine.
Report MA/17/1024, Mathematics Division, Department
of Scientific and Industrial Research, National Physical
Laboratory, Teddington, UK, April 1948.
127 pp.

University of Manchester Nick Higham Solving Ax = b 8 / 8

https://doi.org/10.1145/361284.361297
http://www.alanturing.net/turing_archive/archive/l/l10/l10.php

	Appendix

