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Wilkinson (1948)

Confidential NPL report on the
Automatic Computing Engine
(ACE) gives program
implementing LU factorization
with partial pivoting and iterative
refinement.
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Main Developments

Backward error analysis.

Exploiting computer architecture.

Exploiting parallelism.

Software engineering.

Exploiting different precisions of arithmetic.

Exploiting structure in A.
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Ax = b Solver
Forsythe & Moler (1967),
Computer Solution of Algebraic
Equations: Algol, Fortran and
PL/I codes for solving Ax = b

Moler (1972): importance of
accessing arrays in column
order in Fortran.
“The efficiency of . . . Fortran
programs for matrix computations
can often be improved by reversing
the order of nested loops.

Numerical W.P. Timlake 
Mathematics Editor 
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1. Introduction 

Another Fortran subroutine for solving general sim- 
ultaneous linear equations is included in this issue's Al- 
gorithm section [6]. We feel justified in contributing to 
what is already an oversupply of such routines because 
this particular one is more efficient than its competitors, 
including those in Forsythe and Moler [ 1 ]. The increase 
in efficiency is substantial when the new routine is used 
on large matrices under a multiuser or virtual memory 
operating system which employs some kind of paging 
scheme for dynamic storage allocation. The increase may 
not be as large in other operating situations, but we 
know of no case where the new routines are slower than 
other Fortran programs. 

The increased efficiency is obtained without any cor- 
responding loss of accuracy, applicability, ease of use, 
portability, or other desirable program features. 

The routine uses Gaussian elimination which, in its 
conventional form, involves operations on the rows of 
a matrix. But Fortran in its conventional form, stores 
two-dimensional arrays by columns [2, Sec. 7.2.1.1.1]. 
The data access in conventional programs operating 
row-wise within a matrix thus involves successive mem- 
ory references to locations separated from each other 
by a large increment which depends upon the declared 
dimension of the array. 

Moreover, many modern operating systems automati- 
cally partition the array storage into a number  of separate 
pages and swap these pages in and out of a large second- 
ary memory [3,4,5]. The user is relieved of any respon- 
sibility for controlling this swapping. When the conven- 
tional programs above are used on matrices which occupy 
many pages, an excessive number of page swaps may 
be required. In order to ensure that contiguously stored 
data elements are referenced sequentially, one need only 

Communications April 1972 
of Volume 15 
the ACM Number 4 

→ LINPACK (1979)→ LAPACK (1992)
→ MAGMA (2008), PLASMA (2009)→ . . .
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Basic Linear Algebra Subprograms (BLAS)

Level 1 Lawson, Hanson, Kincaid & Krogh (1979).
Vector operations.

Level 2 Dongarra, Du Croz, Hammarling & Hanson
(1988). Matrix–vector operations.

Level 3 Dongarra, Du Croz, Hammarling & Duff (1990).
Matrix–matrix operations.

Batched Abdelfattah, Costa, Dongarra, Gates, Haidar,
Hammarling, H, Kurzak, Luszczek, Tomov, and
Zounon (2021): Batched BLAS.
Many independent BLAS operations on small
matrices.
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An interesting feature of the codes is
that they made a very intensive use of subroutines;

the addition of two vectors,
multiplication of a vector by a scalar,

inner products, etc.,
were all coded in this way

— J. H. Wilkinson (1980)



Unrolling Loops in FORTRAN

Dongarra & Hinds (1979)

Original
1 for i = 1:1:n
2 yi = yi + αxi

3 end

Unrolled loop
1 for i = 1:4:n
2 yi = yi + αxi

3 yi+1 = yi+1 + αxi+1

4 yi+2 = yi+2 + αxi+2

5 yi+3 = yi+3 + αxi+3

6 end

Speedups typically about 1.5.
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BLAS on a Microcomputer (H, 1985)

Times in seconds for solving Ax = b with n = 60.

Basic Assembly BLAS Speedup

Commodore 64 1535 298 5.2
BBC Micro 450 162 2.8

Pure Basic times dominated by subscripting!
| "SUBROUTINE SAXPY (N,SA,SX,SYl)"
| VECTOR = VECTOR+CONST*VECTOR: SY() : = SY()+SA*SX ()
| SYS AXPY,N,SA,SX(),SY()
SAXPY JSR GETN
!****

JSR GET3 ! (PTR3) -> SA
JSR GET2 ! (PTR2) -> SX ()
JSR GET1 ! (PTR1) -> SY ()

LOOPSAX LDA NLOW ! N=0?
ORA NHIGH
BEQ FINSAX

...
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Growth Factor for Partial Pivoting

ρn(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij |

≥ 1.

ρn ≤ 2n−1 but almost always small in practice (Wilkinson).

>> gf(randn(1000))
ans =

1.5997e+01
>> gf(gallery(’randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01

D. Higham, H, & Pranesh (2021): ρn &
n

4 log n
.

Open problem to explain ρn behavior!

University of Manchester Nick Higham Solving Ax = b 9 / 19



Growth Factor for Partial Pivoting

ρn(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij |

≥ 1.

ρn ≤ 2n−1 but almost always small in practice (Wilkinson).
>> gf(randn(1000))
ans =

1.5997e+01
>> gf(gallery(’randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01

D. Higham, H, & Pranesh (2021): ρn &
n

4 log n
.

Open problem to explain ρn behavior!

University of Manchester Nick Higham Solving Ax = b 9 / 19



Growth Factor for Partial Pivoting

ρn(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij |

≥ 1.

ρn ≤ 2n−1 but almost always small in practice (Wilkinson).
>> gf(randn(1000))
ans =

1.5997e+01
>> gf(gallery(’randsvd’,1000,1e8,2,[],[],1))
ans =

7.5329e+01

D. Higham, H, & Pranesh (2021): ρn &
n

4 log n
.

Open problem to explain ρn behavior!

University of Manchester Nick Higham Solving Ax = b 9 / 19



Iterative Refinement for Ax = b (classic)

Solve Ax0 = b by LU factorization in double precision.
r = b − Ax0 quad precision
Solve Ad = r double precision
x1 = fl(x0 + d) double precision

(x0 ← x1 and iterate as necessary.)

Programmed in J. H. Wilkinson, Progress Report on
the Automatic Computing Engine (1948).
Popular up to 1970s, exploiting cheap accumulation of
inner products.
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Iterative Refinement (1970s, 1980s)

Solve Ax0 = b by LU factorization.
r = b − Ax0

Solve Ad = r
x1 = fl(x0 + d)

Everything in double precision.

Skeel (1980).
Jankowski & Woźniakowski (1977) for a general
solver.
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Iterative Refinement (2000s)

Solve Ax0 = b by LU factorization in single precision.
r = b − Ax0 double precision
Solve Ad = r single precision
x1 = fl(x0 + d) double precision

Dongarra, Langou et al. (2006).
Motivated by single precision at least twice as fast as
double on Intel chips, up to 14 times faster on
Sony/Toshiba/IBM Cell processor.
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Iterative Refinement in Three Precisions
A,b given in double precision.

Solve Ax = b by LU factorization in half precision.
r = b − Ax̂ quad precision
Solve Ad = r half precision
y = x̂ + d double precision

Carson & H (2017, 2018).
Motivated by availability of half precision on GPUs.
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GMRES-Based Iterative Refinement
A, b given in precision u; additional precs uf , up, ug, ur .

Compute LU fact’n (w/pivoting) in prec uf

Solve L̃Ũx1 = b in prec uf .
For i = 1,2, . . .

ri = b − Axi prec ur

Solve MAdi = Mri by GMRES in prec ug where

M = Ũ−1L̃−1 and products with MA in prec up.
xi+1 = xi + di prec u

Carson & H (2017/18): three precs (ug = u, up = ur ).
Amestoy, Buttari, H, L’Excellent, Mary & Vieublé
(2021): five precs.
Implemented with ur = up = ug = u in MAGMA 2.5.0
(2019), TCAIRS in NVIDIA cuSOLVER library.
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Performance on One NVIDIA GV100
Haidar et al. (2020). Factor 4 speedup over fp64.
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Future Directions

Mixed precision algorithms. LU: Lopez & Mary (2020).
Hybrid direct/iterative.
Randomization.
Understanding growth factor for (partial) pivoting.
More realistic rounding error bounds: probabilistic
results (Connolly, H & Mary, 2019/20/21, Ipsen &
Zhou, 2020): f (n)u →

√
f (n)u.

Construction of test matrices, e.g., for HPL-AI
Benchmark (H & Fasi, 20212).
Exploiting structure.
Using AI?

Slides at https://bit.ly/dongarra70
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Daily Mirror, 1952
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Manchester, July 2, 2010
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