

TOP500 and Accidental Benchmarking

New Directions in Numerical Linear Algebra and High Performance Computing: Celebrating the 70th Birthday of Jack Dongarra, July 8, 2021

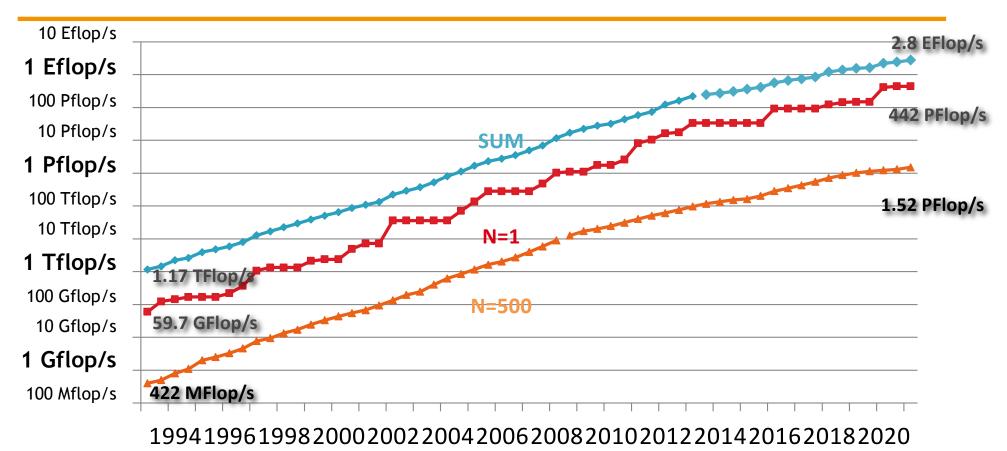
Erich Strohmaier

Confessions of an Accidental Benchmarker

- Appendix B of the Linpack Users' Guide
 - Designed to help users extrapolate execution Linpack software package
- First benchmark report from 1977;
 - Cray 1 to DEC PDP-10

"APPENDIX B"

2:3	. UNIT = 10)**6 T	IME/(1/3	3 100**3 + 100*	*2)	
5 n *	2m ars)	TIME	UNIT			
2	Facility		micro-	Computer	Type	Compiler
	V V	secs.			-71	
	NCAR 14.8	049	0.14	CRAY-1	S	CFT, Assembly BLAS
	LASL 6. 4.64		0.43	CDC 7600	ŝ	FIN, Assembly BLAS
	NCAR 3.5	192	0.56	CRAY-1	S	CFT
	LASL 5,27	.210		CDC 7600	S	FTN
	Argonne 2.3/	.297	0.86	IBM 370/195	D	H
		.359	1.05	CDC 7600	S	Local
	Argonne 177	. 388	1.33	IBM 3033	D	Н
	NASA Langley	. 489	1.42	CDC Cyber 175	S	FTN
	U. Ill. Urbana 1.84	.506	1.47	CDC Cyber 175	S	Ext. 4.6
	LLL	. 554	1.61	CDC 7600	S D	CHAT, No optimize
	SLAC 1,19	. 579	1.69	IBM 370/168	D	H Ext., Fast mult.
	Michigan 1.0	1.631	1.84	Amdah1 470/V6	D	H
		»- 890	2.59	IBM 370/165	D S	H Ext., Fast mult.
	Northwestern 477	1.44	4.20	CDC 6600	S	FTN
	Texas 550	1.93*	5.63	CDC 6600	S	RUN
	China Lake 353	1.95*	5.69	Univac 1110	S	V
		2.59	7.53	DEC KL-20		-F20
	Bell Labs 197	3.46	10.1	Honeywell 6080	S	Y V
	Wisconsin ,107	3.49	10.1	Univac 1110	D	H
	U. III. Chicago	13.54	10.2	Itel AS/5 mod3	D	Gl
	Purdue	15 60	16.6	CDC 6500	s	FUN
	U, C, San Diego			Burroughs 6700		H
	Yale Yale	17 14	49.9	DEC KA-10	S.	н F40
	Tere	arti Th		DISC IGE IC		140
	* TIME(100) = (100/75)**3 SGE	FA(75) + (100/7	5)**2	SGESL(75)

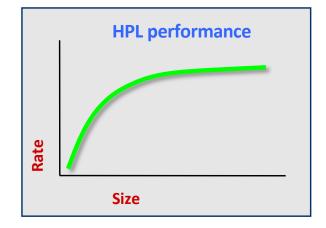


TOP500 – WHY HPL?

- Adaptive definition of 'Supercomputer' for collecting market statistics
- Simple metric and procedure (few rules)
- Based on measured performance (system has to function)
- Floating point benchmark ('scientific computing' in early 90s)
- High performing (optimizable) to encourage adoption
- Broad system coverage
- HPL (High Performance Linpack) had widest coverage by a factor 2-3 x at least
 - ➢ In 1993 and still !

PERFORMANCE DEVELOPMENT

WHY DID LINPACK WORK SO WELL?

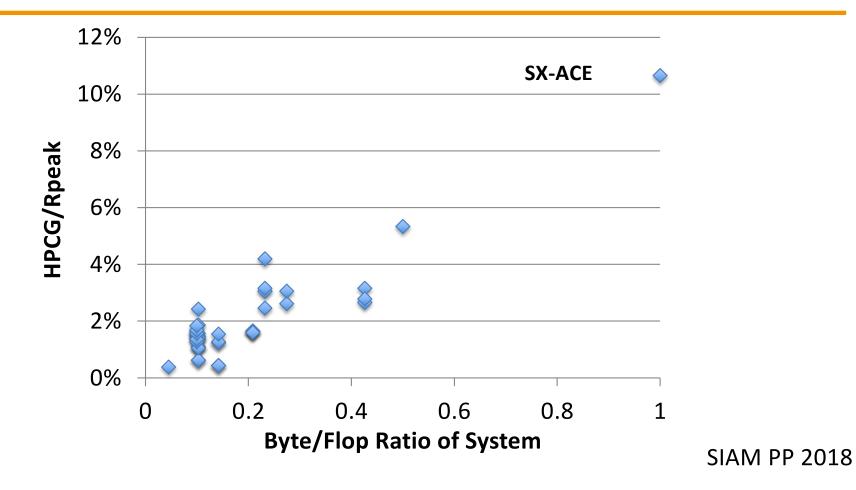

Many reasons, here are 2 essentials for the TOP500:

1) Easy and continuous scalable problem size

Simplicity

2) Asymptotically best performance

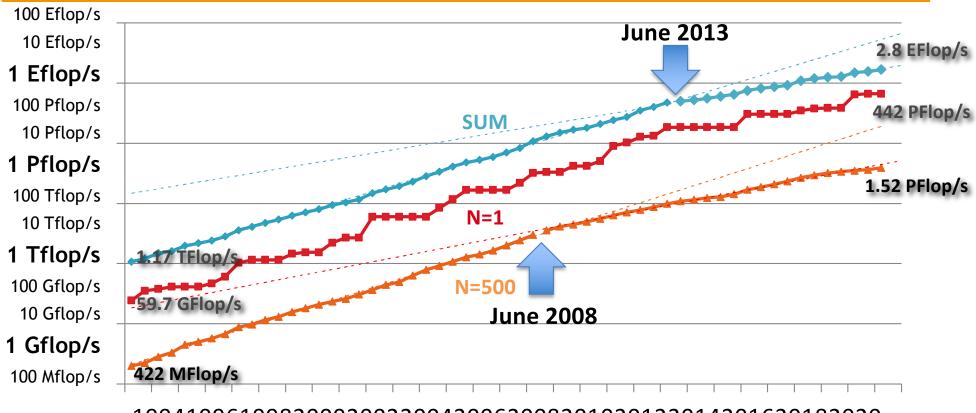
- For both system size and problem size
- Brings out correct long-term trends



CRITERIA FOR ADDITIONAL BENCHMARKS

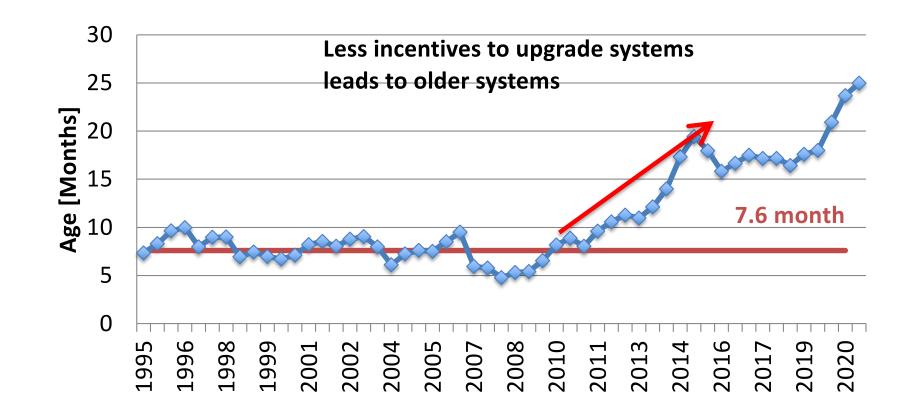
- All the good things from HPL plus:
 - Arithmetic Intensity: Flop/Bytes ~ O(1)
 - Main features all scale with O(n)
- Does not correlate overly well with established BMs
- Changes relative rankings compared to TOP500

HPCG - BYTES/FLOPS

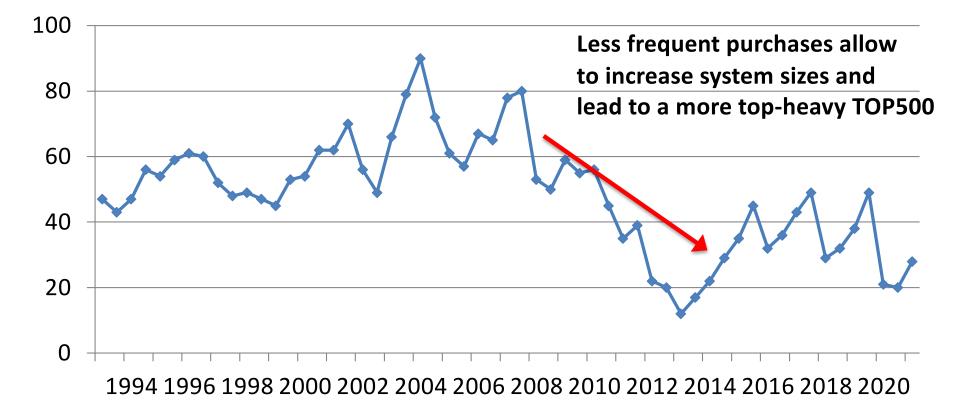


HPL-AI Benchmark Top 5 List, June 2021

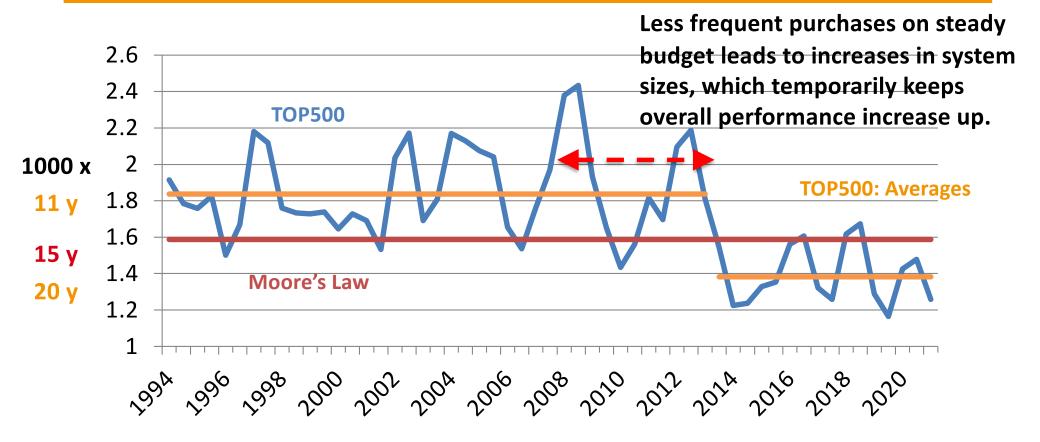
Rank	Site	Computer	Cores	HPL Rmax (Eflop/s)	TOP500 Rank	HPL-AI (Eflop/s)	Speedup
1	RIKEN Center for Computational Science Japan	Fugaku , Fujitsu A64FX, Tofu D	7,630,848	0.442	1	2.0	4.5x
2	DOE/SC/ORNL USA	Summit, AC922 IBM POWER9, IB Dual-rail FDR, NVIDIA Volta V100	2,414,592	0.149	2	1.15	7.7x
3	NVIDIA USA	Selene, DGX SuperPOD, AMD EPYC 7742 64C 2.25 GHz, Mellanox HDR, NVIDIA A100	555,520	0.063	6	0.63	9.9x
4	DOE/SC/LBNL/NERSC USA	Perlmutter , HPE Cray EX235n, AMD EPYC 7763 64C 2.45 GHz, Slingshot-10, NVIDIA A100	761,856	0.065	5	0.59	9.1x
5	Forschungszentrum Juelich (FZJ) Germany	JUWELS Booster Module, Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, Mellanox HDR InfiniBand, NVIDIA Ampere A100, Atos	449,280	0.044	8	0.47	10x

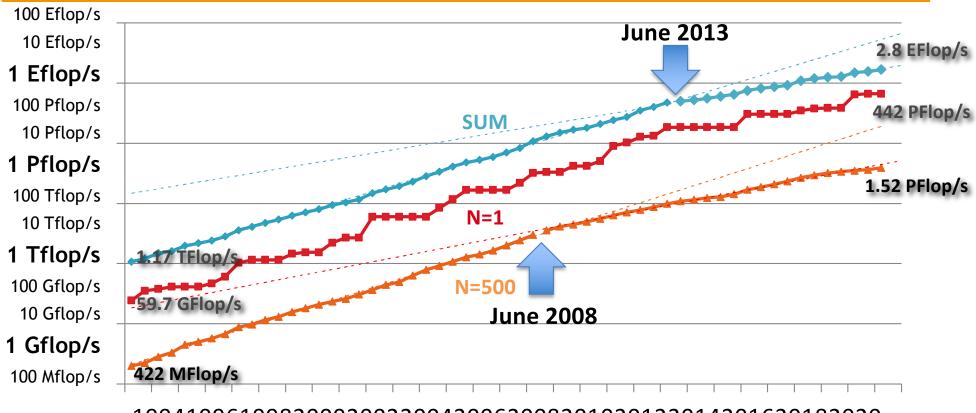

PERFORMANCE DEVELOPMENT

19941996199820002002200420062008201020122014201620182020



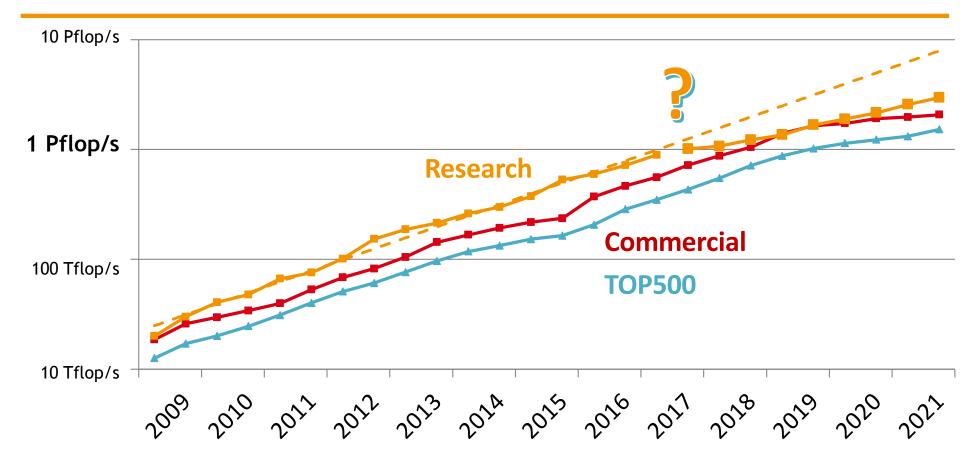
AVERAGE SYSTEM AGE


RANK AT WHICH HALF OF TOTAL PERFORMANCE IS ACCUMULATED

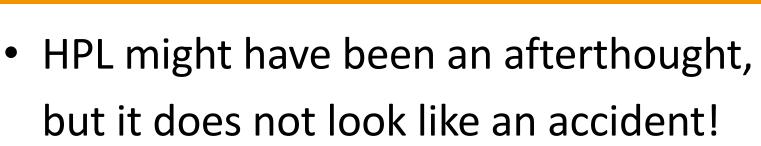

ANNUAL PERFORMANCE INCREASE OF THE TOP500

PERFORMANCE DEVELOPMENT

19941996199820002002200420062008201020122014201620182020



RESEARCH / COMMERCIAL MARKETS


- Markets for scientific computing and for commercial data processing are very different.
- Extract proper sub-samples for these markets from the full TOP500 list
 - TOP100 Research and Academic installations
 - TOP100 Industry (and Vendor) installations
 - Could try to separate out Industry installations but difficult to do
 - Ignore "Government, Classified, Others" for now
 - 100 works reasonably well, more is difficult

ENTRY LEVEL SYSTEM SIZE

"SUMMARY"

- Linear Algebra seems to be everything we need to measure HPC performance ...
- HPL served us well to analyze performance trends in the TOP500 - and continues to do so!

