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Solvers and their nestedness

To achieve the potential of emerging architectures for scientific
applications, we need implementations of fast

* linear and least squares solvers Optimizer === Sens. Analyzer

* eigensolvers & singular value solvers

Time
integrator

* nonlinear and optimization solvers

* time integrators & sensitivity solvers
Singular
Value,
Eigensolver

* stencil solvers Least Squares

solver
that

o offer tunable accuracy-time-space tradeoffs

Nonlinear<
solver

o exploit data sparsity
indicates
o exploit hierarchy of precisions == dependence
o are highly concurrent

e minimize communication and synchronization

o are energy efficient
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Scope for TOPS

® Design and implementation of “solvers”

| Time integrators Optimizer —> Sens. Analyzer

(w/ sens. anal.) f(x, X, l‘, p) =)

m Nonlinear solvers

(w/ sens. anal.) F (_X,' . p) — O intg;fmr

Eigensolver
solver

m Linear solvers Ax — b i

Linear

m Eigensolvers Ax = ﬂ Bx solver

m  Optimizers L
min @(x,u)s.t. F(x,u)=0,u>0 Nonlinar
u

® Software integration —, Indicates

dependence

® Performance optimization
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Scalable solvers for PDE-based
and other simulations

Towards Optimal Petascale Simulations

SciDAC’07 Tutorials, 29 June 2007



Int J High Performance Computing Applications 25:3-60 (2011)

INTERNATIONAL

EXASCALE ROADMAP1.0

SOFTWARE PROJECT

Jack Dongarra
Pete Beckman
Terry Moore
Patrick Aerts
Giovanni Aloisio
Jean-Claude Andre
David Barkai
Jean-Yves Berthou
Taisuke Boku
Bertrand Braunschweig
Franck Cappello
Barbara Chapman
Xuebin Chi

SPONSORS

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore
Al Geist
Bill Gropp
Robert Harrison
Mark Hereld
Michael Heroux
Adolfy Hoisie
Koh Hotta
Yutaka Ishikawa
Fred Johnson

NVIDIA.

Sanjay Kale
Richard Kenway
David Keyes
Bill Kramer
Jesus Labarta
Alain Lichnewsky
Thomas Lippert
Bob Lucas
Barney Maccabe
Satoshi Matsuoka
Paul Messina
Peter Michielse
Bernd Mohr

g R

[ ]
RIKEN

)
FUJITSU

Matthias Mueller
Wolfgang Nagel
Hiroshi Nakashima
Michael E. Papka
Dan Reed
Mitsuhisa Sato
Ed Seidel
John Shalf
David Skinner
Marc Snir
Thomas Sterling
Rick Stevens
Fred Streitz

(€S9

B INRIA

P EEAZ

downloadable at
exascale.org/iesp

Bob Sugar
Shinji Sumimoto
William Tang
John Taylor
Rajeev Thakur
Anne Trefethen
Mateo Valero
Aad van der Steen
Jeffrey Vetter
Peg Williams
Robert Wisniewski
Kathy Yelick

| ]
CERELO

M) Check for updates

THE INTERNATIONAL JOURNAL of

PERFORMANCE
COMPUTING
APPLICATIONS

The International Journal of High
Performance Computing Applicatins

The. International Exascale Software BOSQ
Project roadmap

Reprints and permission:
b.co.ukfjournalsPermissions nav

DOI: 10.1177/109434201039 1989

hpcsagepub.com

®SAGE

Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts,

Giovanni Aloisio, Jean-Claude Andre, David Barkai,

Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig,

Franck Cappello, Barbara Chapman, Xuebin Chi, Alok Choudhary, Sudip Dosanjh,

Thom Dunning, Sandro Fiore, Al Geist, Bill Gropp, Robert Harrison, Mark Hereld,

Michael Heroux, Adolfy Hoisie, Koh Hotta, Zhong Jin, Yutaka Ishikawa, Fred Johnson,

Sanjay Kale, Richard Kenway, David Keyes, Bill Kramer, Jesus Labarta, Alain Lichnewsky,

Thomas Lippert, Bob Lucas, Barney Maccabe, Satoshi Matsuoka, Paul Messina,

Peter Michielse, Bernd Mohr, Matthias S. Mueller, Wolfgang E. Nagel, Hiroshi Nakashima,

Michael E Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner,

Marc Snir, Thomas Sterling, Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto,

William Tang, John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero,

Aad van der Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski and Kathy Yelick

Abstract

Over the last 20 years, the open-source community has provided more and more software on which the world's high-
performance computing systems depend for performance and productivity. The community has invested millions of
dollars and years of effort to build key P However, although the i in these separate software ele-
ments have been tremendously valuable, a great deal of productivity has also been lost because of the lack of planning,
coordination, and key integration of technologies necessary to make them work together smoothly and efficiently, both
within individual petascale systems and between different systems. It seems clear that this completely uncoordinated
development model will not provide the software needed to support the unprecedented parallelism required for peta/
exascale computation on millions of cores, or the flexibility required to exploit new hardware models and features, such
as transactional memory, speculative execution, and graphics processing units. This report describes the work of the
community to prepare for the challenges of I i Iti | bing their efforts in a coordinated Inter-
national Exascale Software Project.
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Abstract

Over the past four years, the Big Data and Exascale Computing (BDEC) project organized a series of five international
workshops that aimed to explore the ways in which the new forms of data-centric discovery introduced by the ongoing
revolution in high-end data analysis (HDA) might be integrated with the established, simulation-centric paradigm of the
high-performance computing (HPC) community. Based on those meetings, we argue that the rapid proliferation of digital
data generators, the unprecedented growth in the volume and diversity of the data they generate, and the intense
evolution of the methods for analyzing and using that data are radically reshaping the landscape of scientific computing.
The most critical problems involve the logistics of wide-area, multistage workflows that will move back and forth across
the computing continuum, between the multitude of distributed sensors, instruments and other devices at the networks
edge, and the centralized resources of commercial clouds and HPC centers. We suggest that the prospects for the future
integration of technological infrastructures and research ecosystems need to be considered at three different levels. First,
we discuss the convergence of research applications and workflows that establish a research paradigm that combines both
HPC and HDA, where ongoing progress is already motivating efforts at the other two levels. Second, we offer an account
of some of the problems involved with creating a converged infrastructure for peripheral environments, that is, a shared
infrastructure that can be deployed throughout the network in a scalable manner to meet the highly diverse requirements
for processing, communication, and buffering/storage of massive data workflows of many different scientific domains.
Third, we focus on some opportunities for software ecosystem convergence in big, logically centralized facilities that
execute large-scale simulations and models and/or perform large-scale data analytics. We close by offering some con-
clusions and recommendations for future investment and policy review.
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I. Executive summary

Although the “big data” revolution first came to public
prominence (circa 2010) in online enterprises like Google,

Amazon, and Facebook, it is now widely recognized as the
initial phase of a watershed transformation that modern
society generally—and scientific and engineering research
in particular—are in the process of undergoing. Respond-
ing to this disruptive wave of change, over the past 4 years,
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Introduction

Consider a nonlinear problem F(z) =0, F: D C R™ — R™.

Taking the Taylor expansion,

F(x) = F(zx) + F'(ap)(x — 2x) |+ O(l|lz — zx]|?).

@ When high-order terms dominate, the
linear model is not a suitable

approximation to F'(z). o
@ Strong nonlinearities result in a long R \\\Q\,\ " bigh Reynolds
plateau period of the residual ||F(zg)[|. ¢ I\ \
M \
@ Only a small number of components of 4 «* Mm \\\
the solution may undergo significant I ]
updates in Newton corrections that are ' e e
highly damped by linesearch \ |iow Reynolas \‘
backtracking or trust region \ | |
globalization. B

# Newton iterations Cai &K, SISC 2002

Newton methods may thus waste considerable computational resources solving global
linear systems in problems that are “nonlinearly stiff’ until they find the convergence
domain. Examples include shocks, combustion fronts, recirculation bubbles, etc.
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Enter nonlinear preconditioning

@ A nonlinear “preconditioner” performs nonlinear relaxation
within one or more subspaces, inside the context of an outer
Newton method “accelerator.”

e Analogous to linear preconditioners, such as domain
decomposition or multigrid, inside a Krylov accelerator.

e Preconditioned Krylov methods are often used inside both the
nonlinear subproblems and the global problem.

@ A prime consideration in selecting a nonlinear preconditioner
is whether the resulting outer problem is amenable to linear
preconditioning.

@ Left nonlinear preconditioners ASPIN and MSPIN complicate
linear preconditioning by replacing a sparse Jacobian with a
dense one.

o Right preconditioners like INB-NE retain the original Jacobian.

o Left preconditioner NEPIN (introduced here) can also employ
the original Jacobian.

4/41
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Nonlinear preconditioning

o Left preconditioning: solve equivalent system with better
balanced nonlinearities

F(z) = G(F(z)) =0,

- e.g., Additive Schwarz Preconditioned Inexact Newton
(ASPIN), Cai & K (SISC, 2002), Multiplicative Schwarz
Preconditioned Inexact Newton (MSPIN), Liu & K (SISC,
2015), Restricted Additive Schwarz Preconditioned Exact
Newton (RASPEN), Dolean et al. (SISC, 2016), Nonlinear
Elimination Preconditioning Inexact Newton (NEPIN), Liu et
al. (2021, submitted)

@ Right preconditioning: start from a better initial guess by
correction within a subspace:

F(G(T)) = 0,2 = G(T),
- e.g., Nonlinear FETI-DP and BDDC, Klawonn et al. (SISC,

2014), Nonlinear Elimination (NE), Hwang et al. (Comp & Fl,
2015), Luo et al. (SISC, 2020)
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Co-authors and references for this talk

P

Liu & K

Field-split preconditioned inexact Newton

SIsC

2015
algorithms
2016 Liu& K [Convergence analysis for the multiplicative SINUM
Schwarz preconditioned inexact Newton algorithm
2018 Liu, K& |A note on adaptive nonlinear preconditioning SISC
Krause [techniques
2021 Liu& K [Approximate error bounds on solutions of SISC
nonlinearly preconditioned PDEs (to appear)
2021 | Liu, Hwang, |A nonlinear elimination preconditioned inexact
Luo, Cai & K|Newton algorithm (submitted)
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Short-cuts for a 10-minute peek

@ We illustrate on standard 2D PDE models
@ transonic potential flow over an airfoil
@ velocity-vorticity incompressible Navier-Stokes in a cavity

@ velocity-vorticity-energy incompressible Boussinesq in a cavity
@ Some other applications, not discussed here:
@ porous media flows, arterial flows, two-phase flows, combustion

Discretizations are suppressed, being primitive
@ second-order finite differences

@ 2-point upwinding from Boeing in transonic potential example

Derivations are suppressed
@ please see references

o Parallel scaling and parameter tuning are suppressed
@ PETSc, on KAUST's Shaheen Cray SC-40
@ nonlinear preconditioning has imbalance issues not yet addressed in our
software, but Newton-Krylov scaling is decent within a subproblem or
outer Newton iteration
@ inexact Newton uses loose linear convergence tolerances

@ nonlinear convergence tolerances and thresholds for “bad”/“good”

component selection can be nontrivial
7/41
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A simple algebraic example in R?

o Fl(fL‘l,xg) - (5171 —x§+1)5—x3 o
F(z1,22) = Folay,a) |~ o1 4 229 — 3 =0 (1)
log(||F(x)[|+1) Initial guess: x0=(2,2)

(] PP II
O Contours of log([IF)[1+1] / /
-O-INB [T o e
—¥-NEPIN ‘ ‘

0 T T T T 77

0.5 0 05 1 1.5 2

¥
Figure: Contours of log(||F'(x)|| + 1) for and the path using Inexact Newton with
Backtracking (INB) (blue circles) and Nonlinear Elimination Preconditioning Inexact

Newton (NEPIN) (red stars) from the same starting point z° = [2,2]T".
8/41
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© Nonlinear Elimination Preconditioned Inexact Newton
Algorithms (NEPIN)
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Nonlinear Elimination PIN for unbalanced nonlinearities

The components of the nonlinear system F(z) = 0 are partitioned
heuristically into two groups, “bad” and “good,” labeled as F} and
F,, respectively, according to the degree of nonlinear “stiffness.”
This is often successfully associated with the components whose
absolute residual exceeds some threshold, or for which some
physical feature exceeds some threshold. The unknowns principally
associated with each equation are split conformally into

x = [zp, 14T

o-ra-[B]

where ;, and x4, are “bad” and “good” components, respectively.

10/41
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Nonlinear preconditioned function

For a given partitioning, the nonlinear elimination preconditioned function

ro-rme - B0 -[RG] e

is obtained by solving the subsystem
Fyp(zp — Tp(z), zg) = 0. (4)
for Ty (x). The Jacobian of F(x) can be written in the form of

1 OF, OF,

<M> Ouy, oz

J(x) = Ouy, oF, an , where up =xp — Tp(z).  (5)
Ig oxy, Oz g

Then the Newton correction step

; Ty () }
d=F(z) = 6
T@i=ra = | ) ©)
is equivalent, upon multiplying the upper block row through by J, = RyJ (up, zg)RY,
to
5 JpTp(z) }
J(up, g)d = . 7
(unag)i= | A ™

11/41
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NEPIN algorithm basic step

1. Solve the subspace problem:

Fy(z0) = Fy(zp” - 10,2l = 0,

2. Form the global residual

g®) =

Jb(z(k))Tb(k)
Fg(m(k))

3. Solve inexactly for the Newton direction d*) in
J(ZENd®) = ¢*) - where J(z) = F'(z)
4. Compute the new approximate solution

L)) _ o (B) _ \ (k) glk)

. Jo(z%)) = RyJ (2N RY .

(9)

(10)

(11)

12/41
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Example: Transonic full potential flow

Consider transonic flow around an airfoil, which is described by the scalar full potential
equation, derived for inviscid, irrotational, isentropic compressible flow as:

V- (p(®)Ve) = 0, (12)

where & is the velocity potential, and V® = [u,v]T is the velocity field. The density
function p is computed by

-1 vo|3 T
P(P) = pos (1 + %Mfo (1 - 2 ”2)) ’ (13)

with suitable upwinding, as in the Boeing TRANAIR code [Young et al., JCP 1991].

B(z.y) = a
B(z,y) =0 B(2,y) =
Q;
P 0P
5, =" 3 ="

13/41
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Example: Transonic full potential flow

Iso-Mach linesatM _=0.8 Pressure coefficientat M _ =0.8

Figure: Mach number countours (left) and the pressure coefficient C,

curve (right) obtained by the final solution at M, = 0.8 on a uniform
512 x 512 mesh.
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The distribution of the “bad” components

Define “bad” components as those where the local velocity exceeds
a certain cut-off Mach number, M (z,y) > M..

k=2 k=4 k=7

20 250 250

0
W0 40 50 0 50 100 150 200 250 %0 90 400 450 500

50 10 19 200 250 30 0 400 40 S0 0 50 100 150 20 250 300 350
nz-21647 nz 23512 2 - 24567

Figure: The evolution of the “bad” component region using NEPIN for
M., = 0.8 and M, = 0.82, on a uniform 512 x 512 mesh, on the second,
the fourth and the seventh global Newton iterations. Number of bad
components: 21,647 at iteration 2; then 23,512 at iteration 4; then
24,567 at iteration 7.
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Convergence history for varying mesh size (M, = 0.82)

33+ INB on 128 x 128 mesh
10 O INB on 256 » 256 mesh
- INB on 512 x512 mesh
on 128 x 128 mesf
on 256 x 256 mes!
¥— NEINB on 512 x 512 me:

(=

Newton residual
3

10712

1071

Newton steps

INB, 512x512 mesh 15 NEPIN, 512x512 mesh

035 04 045 05 055 06 0.65

035 04 045 05 055 06 065
The convergence history 16 / 41
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© Multiplicative Schwarz Preconditioned Inexact Newton
algorithm (MSPIN)
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Multiplicative Schwarz Preconditioned Inexact Newton algorithm (MSPIN)

A form of nonlinear Gauss-Seidel:

The nonlinear function F(z) is split conformally into 2 nonoverlapping components,
representing distinct fields or physical features, as

_ _| Gluv) | _
F(z) = F(u,v) = |: H(u,v) } =0. (14)
The preconditioned system comes from solving subspace nonlinear problems:
_ | 9(u,v)
Fun) = | 100 | (15)
1. Solve for g in
Glu—g,v)=0

2. Solve for h with the new g in

H(u—g,v—h)=0
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MSPIN, 2-component, non-overlapping

The Jacobian matrix of the preconditioned system is

g g G -1 8G  9G

u  Gv d ] v

I (u,0) = = BII; oH ag oH | (16)
o P e

Op  Oq
where p = u — g(u,v) and ¢ = v — h(u,v).
In practice, since (p, q) approaches (u,v) as the solution converges

locally, the preconditioned Jacobian is locally well approximated by
the readily computable

—1 —1
duseswo = | 2 g | [ =l w ] s an

Generalization to 3 or more components is straightforward.
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Example: lid-driven cavity

The governing system consists of the nondimensional steady-state
incompressible Navier-Stokes equations in vorticity-velocity form:

—Au — g—‘; =0,
Ow __

—Aw + Re(u% + ”%) =0,

There are three unknowns: the velocity fields (u,v) in the (z,y)
directions, and the vorticity w. The parameter Re controls the
system's only nonlinearity.

We employ MSPIN as the nonlinear preconditioner with two
subsystems: the two velocity equations as one subsystem and the

vorticity equation as the other.
20/41
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Example: lid-driven cavity

Re=10s4

Ra=1.0

o
high Reynolds

Inexact Newton
with Backtracking

\
| oz 0c2

low Réynolds
|
|

LR
5 w15 2 % w0 45 %

# Newton iterations

MSPIN
10° T T T
—A—Re=1
—+—Re =100
e
10° —6— Re = 10000

L

MSPIN convergence
based on field splitting

%

3

%

Relative nonlinear residuals

= » 21/41

15
PIN iterations



Some analysis

[Liu & K, SISC, 2015] F(z) and F(x) are equivalent in the sense
that they have the same solution in a neighborhood of z* in D.

[Liu & K, SINUM, 2016] MSPIN's local convergence is guaranteed
@ superlinear if the forcing tolerance approaches 0

@ quadratically if the forcing tolerance approaches 0 like

O(IFOID

22/41
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Outline

@ Adaptive Use of Nonlinear Preconditioning
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Adaptive preconditioning motivation

Mk =

Asymptotically, nonlinear preconditioned Newton approaches
Newton.

A preconditioned Newton step is more expensive because of
the nonlinear subiterations.

Nonlinear preconditioning should be “on” only when needed
and “off” when not.

A scalar manipulation of norms available as by-products of the
global iterations can be the switch.

Nk below reflects the agreement between F'(x) and its local
linear model at the previous step:

IE@i)l] = [[F(2r-1) + F'(2r-1) sk |
[1F (ze-1) ’

=1,2,...,
(19)
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Adaptive preconditioning algorithm

Set initial iterate z(9)
Set g = 1 and switch tolerance €
While £ =0,1,2,... until convergence
Update 21 starting from z(¥) based on 7;:

If e <e

Implement one step of plain INB
Else

Implement one step of nonlinearly preconditioned INB
EndlIf

Step 2. Compute g1
Step3. k< k+1
EndWhile

25/41
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Example: lid-driven cavity

We compare the number of nonlinear iterations using MSPIN and
MSPIN-adapt at different Reynolds numbers. MSPIN-adapt
suspends preconditioning for the terminal step(s), but converges in
the same number of Newton iterations as MSPIN.

INB fails to converge from the same ‘“cold” start for large Reynolds
numbers.

Number of global Newton iterations

Algorithm Re =100 | Re =1000 | Re = 5000 | Re = 10000
INB 5 - - -
MSPIN 4 3 3 3
MSPIN-adapt 4 3 3 3

26/41



History of 7 for the lid-driven cavity with € = 0.2.

Adaptivity
ooooe

Example: lid-driven cavity

Re =100
Iter Nk step
0 1.0 MSPIN
1 | 0.580156 | MSPIN
2 | 0.132696 INB
3 | 0.028887 INB
Re = 1000
Iter Nk step
0 1.0 MSPIN
1 | 0.272078 | MSPIN
2 | 0.025135 INB
Re = 10000
Iter Nk step
0 1.0 MSPIN
1 | 0.061412 INB
2 | 0.034303 INB
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Motivation

@ In applications, we are are often happy with selected
functionals of the overall field solution.

@ Some of these, particularly integral functionals, may converge
faster than the primitive variables.

@ Can we directly bound the functionals with by-products of the
iteration and stop early?

@ The field solution [w, p, T 7T
id 151 @ Given an input heat flux g, we wish to determine whether
T = const
q —>:| s, O Trmean = Tds.
1
‘ To
q— | T3 is within an acceptable design interval.

The problem of cooling electronic components in a computer by natural convection of air in the enclosure.
82/ U3_( Ty is isolated.
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Output linear functional of the coupled solution

As in MSPIN, the nonlinear system F(x) is split as

G(u,v)

F(x) = F(u,v) = [H(u,v)

] =0, z=[u], (20)

We are interested in a linear functional of the coupled solution:

J(uvv) = <¢17u> + <”¢27v>> (21)
for prescribed 11 € R™ and 19 € R™2.
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Approximate error bounds for MSPIN

We can bound the error in the linear functional in terms of the
component residuals and some Jacobian blocks

J(u,v) — J(aU 5k

= <¢1,U—u N+ (g, v — 5Ky
(o, B+ (o, B BE (1 - ¢y R
(s, (I = C§) 'R,

%

where Cék) = B§’§) Bé’I)BY? B%)-
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Approximate error bounds for MSPIN

In the MSPIN algorithm, the submodels are solved sequentially for the physical
variable corrections, which implicitly forms the preconditioned system. For any given
x = [u,v]T € R", the preconditioned nonlinear system

Fz) = [ZEZ Zﬂ —0 (22)
is obtained by solving
G(u—g,v) =0, (23)

for g. With values of u, v, g, the system
H(u—g,v—h)=0, (24)

is solved for h.
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Approximate error bounds for MSPIN

Let p = u — g(u,v) and ¢ = v — h(u,v). We define

Ao %% %*g _|Bur Bz (25)
% % Bo1  Bao|

The derivatives of g and h with respect to u and v are written as

dg 9g —1
= =1, —==BB 26
ou wsy 90 11 P12, ( )
oh oh _ _
-0 gy =~ By B21 81y Bz, (27)

where I, and I, are the identity matrices that have the same dimension as the u and
v blocks, respectively.
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Approximate error bounds for MSPIN

LILEE

At the k-th iteration in the MSPIN algorithm, the approximate solution is denoted by (k) = [d(k) s ﬁ(k)]T and
=il =i
let Cék) = Bég) Bé}i)BYi) Bg). We define the error induced in the linear functional (21) as

AJy = |J(u,v) — J(@F), 5y (28)

Then the approximate error bound is given by

AJp S

_ T —T
(1, R+ 12 = SRS 18R " B ™y | (29)
+ R = )T Tl

If HCék) || < 1, we further derive

. T -7
ATy S K, R+ IR BT B ™ |l + (=2l (30)

1
S —
1 = (el
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Example: buoyancy-driven cavity

The governing system consists of the nondimensional steady-state
incompressible Navier-Stokes equations in vorticity-velocity form
with Boussinesq bouyancy and the energy equation:
( ow __

—AU — 872/ = 0,

ow __
—Av + o9z — 0,
ol o) 0 (31)
T
—Aw—l—u%—}—va—‘; —Grg, =0,

| —AT + Pr(ugl +vgl) =0,

There are four unknowns: the velocity fields (u, v) in the (z,y)
directions, the vorticity w and the temperature 7.
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Example: buoyancy-driven cavity

For this example, we are interested in the following four linear
functionals of u, v, w and T"

1
J = /Ou(O.S,y)dy, (32)
Jo = v5(0.5,0.5), (33)
J5 = w(0.5,0.5), (34)

1 1
Jy = / / Tdxdy. (35)
o Jo

J1 is the mass flux across the vertical line through geometric center of the cavity;
Jg is the partial derivative of v along the horizontal line through the center point;

J3 is the vorticity at the center point;

J4 is the average temperature in the cavity.
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Error bounds using MSPIN with different Gr

FIgU r€: The absolute errors (solid) in J1, Jo, J3 and J4 with Gr = 10, 103, 10%, Pr = 1 and the lid
velocity Vj;4 = 0.1 on uniform 256 X 256 mesh, with the corresponding error bounds (dotted).
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Conclusions

@ Experiments demonstrate that left-preconditioned methods
NEPIN (threshold-split) and MSPIN (field-split) can each be
effective in improving on the convergence of global Inexact
Newton with Backtracking (INB) iterations.

@ Nonlinear preconditioning expends extra local computational
cost for the solution of nonlinear subproblems to reduce the
computation, communication, and synchronization costs of
the global outer iterations, by reducing their number.

@ A simple adaptive framework is useful to switch nonlinear
preconditioning on and off during the outer Newton iterations.

@ A posteriori approximate error bounds on the linear
functionals of interest are available using by-products of the
nonlinear preconditioning split systems.
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Future Work

@ Use of dynamic runtime systems to better sequence the
irregularity of the nonlinear subiterations

@ More automated identification of “bad” components systems,
perhaps using machine learning
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