## Jack Dongarra Awarded SIAM/ACM Prize in Computational Science and Engineering

Congratulations to Jack Dongarra who recently received the SIAM/ACM Prize in Computational Science and Engineering.

Jack Dongarra will receive the SIAM/ACM Prize in Computational Science and Engineering at the SIAM Conference on Computational Science and Engineering (CSE19) held February 25 – March 1, 2019 in Spokane, Washington. He will receive the award and deliver his prize lecture, “The Singular Value Decomposition: Anatomy of an Algorithm, Optimizing for Performance,” on February 28, 2019.

SIAM and the Association for Computing Machinery (ACM) jointly award the SIAM/ACM Prize in Computational Science and Engineering every two years at the SIAM Conference on Computational Science and Engineering for outstanding contributions to the development and use of mathematical and computational tools and methods for the solution of science and engineering problems. With this award, SIAM and ACM recognize Dongarra for his key role in the development of software and software standards, software repositories, performance and benchmarking software, and in community efforts to prepare for the challenges of exascale computing, especially in adapting linear algebra infrastructure to emerging architectures.

When asked about his research for which the prize was awarded, Dongarra said “I have been involved in the design and development of high performance mathematical software for the past 35 years, especially regarding linear algebra libraries for sequential, parallel, vector, and accelerated computers. Of course, the work that led to this award could not have been achieved without the help, support, collaboration, and interactions of many people over the years. I have had the good fortune of working on a number of high profile projects: in the area of mathematical software, EISPACK, LINPACK, LAPACK, ScaLAPACK, ATLAS and today with PLASMA, MAGMA, and SLATE; community de facto standards such as the BLAS, MPI, and PVM; performance analysis and benchmarking tools such as the PAPI, LINPACK benchmark, the Top500, and HPCG benchmarks; and the software repository netlib, arguably the first open source repository for publicly available mathematical software.”

This article was extracted from SIAM News. Further information is available here.